Chaos Driven PSO with Ensemble of Priority Factors

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 289)


In this paper a new approach for PSO algorithm driven by chaotic pseudorandom number generator is investigated. The ensemble learning method that has been successfully implemented in many evolutionary computational techniques is applied here for the selection of priority factors in the velocity calculations formula. The goal is to improve the performance of chaos driven PSO. The promising results are compared with previously published results of SPSO-2011 on the CEC´ 13 benchmark set.


Particle swarm optimization chaos PSO Evolutionary algorithm optimization Ensemble learning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers (2001)Google Scholar
  3. 3.
    Liang, J., Suganthan, P.N.: Dynamic multi-swarm particle swarm optimizer. In: Swarm Intelligence Symposium, SIS 2005, pp. 124–129 (2005)Google Scholar
  4. 4.
    Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation 10(3), 281–295 (2006)CrossRefGoogle Scholar
  5. 5.
    Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Applied Soft Computing 11(4), 3658–3670 (2011)CrossRefGoogle Scholar
  6. 6.
    Zhi-Hui, Z., Jun, Z., Yun, L., Yu-hui, S.: Orthogonal Learning Particle Swarm Optimization. IEEE Transactions on Evolutionary Computatio 15(6), 832–847 (2011)CrossRefGoogle Scholar
  7. 7.
    Yuhui, S., Eberhart, R.: A modified particle swarm optimizer. In: IEEE World Congress on Computational Intelligence, May 4-9, pp. 69–73 (1998)Google Scholar
  8. 8.
    Kennedy, J., Mendes, R.: Population structure and particle swarm performance. In: Proceedings of the 2002 Congress on Evolutionary Computation, CEC 2002, pp. 1671–1676 (2002)Google Scholar
  9. 9.
    van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajectories. Information Sciences 176(8), 937–971 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Mallipeddi, R., Suganthan, P.N.: Differential Evolution Algorithm with Ensemble of Parameters and Mutation and Crossover Strategies. In: Panigrahi, B.K., Das, S., Suganthan, P.N., Dash, S.S. (eds.) SEMCCO 2010. LNCS, vol. 6466, pp. 71–78. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Mallipeddi, R., Suganthan, P.N.: Differential Evolution Algorithm with Ensemble of populations for Global Numerical Optimization. OPSEARCH 46(2), 184–213 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(3), 289–304 (2003)CrossRefGoogle Scholar
  13. 13.
    Araujo, E., Coelho, L.: Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system. Applied Soft Computing 8(4), 1354–1364 (2008)CrossRefGoogle Scholar
  14. 14.
    Alatas, B., Akin, E., Ozer, B.A.: Chaos embedded particle swarm optimization algorithms. Chaos, Solitons & Fractals 40(4), 1715–1734 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Computers & Mathematics with Applications 66, 122–134 (2013)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Pluhacek, M., Senkerik, R., Zelinka, I.: Particle swarm optimization algorithm driven by multichaotic number generator. Soft Comput. 18(4), 631–639 (2014), doi:10.1007/s00500-014-1222-zCrossRefGoogle Scholar
  17. 17.
    Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D.: On the Performance of Enhanced PSO Algorithm with Dissipative Chaotic Map in the Task of High Dimensional Optimization Problems. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 89–99. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  18. 18.
    Pluhacek, M., Senkerik, R., Davendra, D., Zelinka, I.: Designing PID controller for DC motor by means of enhanced PSO algorithm with dissipative chaotic map. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 475–483. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  19. 19.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)Google Scholar
  20. 20.
    Liang, J.J., Qu, B.-Y., Suganthan, P.N., Hernández-Díaz Alfredo, G.: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter Optimization. Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore (January 2013)Google Scholar
  21. 21.
    Zambrano-Bigiarini, M., Clerc, M., Rojas, R.: Standard Particle Swarm Optimisation 2011 at CEC-2013: A baseline for future PSO improvements. In: 2013 IEEE Congress on Evolutionary Computation (CEC), June 20-23, pp. 2337–2344 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceVŠB-Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations