Tuning the Lozi Map in Chaos Driven PSO Inspired by the Multi-chaotic Approach
Conference paper
- 1k Downloads
Abstract
In this paper a previous successful research on chaos enhanced particle swarm optimization algorithm (PSO) is expanded. The possibility of adaptive change of control parameters of chaotic systems that is used as a pseudo-random number generator for the velocity calculation in PSO algorithm is investigated. To evaluate the performance of newly designed algorithm the CEC´ 13 benchmark set was used.
Keywords
Particle swarm optimization chaos Lozi map PSO Evolutionary algorithmPreview
Unable to display preview. Download preview PDF.
References
- 1.Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
- 2.Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers (2001)Google Scholar
- 3.Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Applied Soft Computing 11(4), 3658–3670 (2011)CrossRefGoogle Scholar
- 4.Yuhui, S., Eberhart, R.: A modified particle swarm optimizer. In: IEEE World Congress on Computational Intelligence, May 4-9, pp. 69–73 (1998)Google Scholar
- 5.Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(3), 289–304 (2003)CrossRefGoogle Scholar
- 6.Araujo, E., Coelho, L.: Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system. Applied Soft Computing 8(4), 1354–1364 (2008)CrossRefGoogle Scholar
- 7.Alatas, B., Akin, E., Ozer, B.A.: Chaos embedded particle swarm optimization algorithms. Chaos, Solitons & Fractals 40(4), 1715–1734 (2009) ISSN 0960-0779 CrossRefzbMATHMathSciNetGoogle Scholar
- 8.Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Computers & Mathematics with Applications 66, 122–134 (2013)CrossRefMathSciNetGoogle Scholar
- 9.Pluhacek, M., Senkerik, R., Zelinka, I.: Particle swarm optimization algorithm driven by multichaotic number generator. Soft Comput. 18(4), 631–639 (2014), doi:10.1007/s00500-014-1222-zCrossRefGoogle Scholar
- 10.Pluhacek, M., Senkerik, R., Davendra, D., Zelinka, I., Designing, P.I.D., Controller For, D.C.: Designing PID Controller For DC Motor System By Means of Enhanced PSO Algorithm with Discrete Chaotic Lozi Map. In: Proceedings of the 26th European Conference on Modelling and Simulation, ECMS 2012, pp. 405–409 (2012) ISBN 978-0-9564944-4-3Google Scholar
- 11.Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)Google Scholar
- 12.Liang, J.J., Qu, B.-Y., Suganthan, P.N., Hernández-Díaz Alfredo, G.: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter Optimization. Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore (January 2013)Google Scholar
- 13.Zelinka, I., Senkerik, R., Pluhacek, M.: Do evolutionary algorithms indeed require randomness? In: 2013 IEEE Congress on Evolutionary Computation (CEC), June 20-23, pp. 2283–2289 (2013), doi:10.1109/CEC.2 013.6557841Google Scholar
Copyright information
© Springer International Publishing Switzerland 2014