Tuning the Lozi Map in Chaos Driven PSO Inspired by the Multi-chaotic Approach

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 289)


In this paper a previous successful research on chaos enhanced particle swarm optimization algorithm (PSO) is expanded. The possibility of adaptive change of control parameters of chaotic systems that is used as a pseudo-random number generator for the velocity calculation in PSO algorithm is investigated. To evaluate the performance of newly designed algorithm the CEC´ 13 benchmark set was used.


Particle swarm optimization chaos Lozi map PSO Evolutionary algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)Google Scholar
  2. 2.
    Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers (2001)Google Scholar
  3. 3.
    Nickabadi, A., Ebadzadeh, M.M., Safabakhsh, R.: A novel particle swarm optimization algorithm with adaptive inertia weight. Applied Soft Computing 11(4), 3658–3670 (2011)CrossRefGoogle Scholar
  4. 4.
    Yuhui, S., Eberhart, R.: A modified particle swarm optimizer. In: IEEE World Congress on Computational Intelligence, May 4-9, pp. 69–73 (1998)Google Scholar
  5. 5.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7(3), 289–304 (2003)CrossRefGoogle Scholar
  6. 6.
    Araujo, E., Coelho, L.: Particle swarm approaches using Lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system. Applied Soft Computing 8(4), 1354–1364 (2008)CrossRefGoogle Scholar
  7. 7.
    Alatas, B., Akin, E., Ozer, B.A.: Chaos embedded particle swarm optimization algorithms. Chaos, Solitons & Fractals 40(4), 1715–1734 (2009) ISSN 0960-0779 CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Computers & Mathematics with Applications 66, 122–134 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Pluhacek, M., Senkerik, R., Zelinka, I.: Particle swarm optimization algorithm driven by multichaotic number generator. Soft Comput. 18(4), 631–639 (2014), doi:10.1007/s00500-014-1222-zCrossRefGoogle Scholar
  10. 10.
    Pluhacek, M., Senkerik, R., Davendra, D., Zelinka, I., Designing, P.I.D., Controller For, D.C.: Designing PID Controller For DC Motor System By Means of Enhanced PSO Algorithm with Discrete Chaotic Lozi Map. In: Proceedings of the 26th European Conference on Modelling and Simulation, ECMS 2012, pp. 405–409 (2012) ISBN 978-0-9564944-4-3Google Scholar
  11. 11.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)Google Scholar
  12. 12.
    Liang, J.J., Qu, B.-Y., Suganthan, P.N., Hernández-Díaz Alfredo, G.: Problem Definitions and Evaluation Criteria for the CEC 2013 Special Session and Competition on Real-Parameter Optimization. Technical Report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore (January 2013)Google Scholar
  13. 13.
    Zelinka, I., Senkerik, R., Pluhacek, M.: Do evolutionary algorithms indeed require randomness? In: 2013 IEEE Congress on Evolutionary Computation (CEC), June 20-23, pp. 2283–2289 (2013), doi:10.1109/CEC.2 013.6557841Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceVŠB-Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations