Modelling Queues in Transportation Networks Using P Systems

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 289)


This paper proposes variant of P system for passenger flow modelling in transportation networks. Mobile membranes are used as vehicles, which enable transportation of passengers within the network. Performance of the system is shown on four examples, which examine the queueing mechanisms and queue propagation in transportation networks. Both artificial and real transportation systems are used in simulations and results are discussed.


P systems mobile membranes transportation queue Prague Metro 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A., Freund, R., Rogozhin, Y.: Computational Power of Symport/Antiport: History, Advances, and Open Problems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Alhazov, A., Margenstern, M., Rogozhin, V., Rogozhin, Y., Verlan, S.: Communicative P Systems with Minimal Cooperation. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 161–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tini, S.: P systems with Transport and Diffusion Channels. Fundamenta Informaticae XX, 1–15 (2009)Google Scholar
  4. 4.
    Barbuti, R., Maggiolo-Schettini, A., Milazzo, P., Tesei, L.: Timed P Automata. Electronic Notes in Theoretical Computer Science 227, 21–36 (2009)CrossRefGoogle Scholar
  5. 5.
    Cavaliere, M.: Evolution–Communication P Systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 134–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Dvorský, J., Janoška, Z., Vojáček, L.: P Systems for Traffic Flow Simulation. In: Cortesi, A., Chaki, N., Saeed, K., Wierzchoń, S. (eds.) CISIM 2012. LNCS, vol. 7564, pp. 405–415. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Hoogendoorn, S.P., Bovy, P.H.L.: State-of-the-art of Vehicular Traffic Flow Modelling. Delft University of Technology, Delft (2001)Google Scholar
  8. 8.
    Ionescu, M., Păun, G., Yokomori, T.: Spiking Neural P Systems. Fundamenta Informaticae 71(2,3), 279–308 (2006)MATHMathSciNetGoogle Scholar
  9. 9.
    Janoška, Z., Dvorský, J.: P system based model of passenger flow in public transportation systems: a case study of Prague Metro. Presented at 13th Annual International Workshop on Databases, Texts, Specifications, and Objects, Písek, Czech Republic, April 17-19 (2013)Google Scholar
  10. 10.
    Krishna, S.N., Păun, G.: P Systems with Mobile Membranes, pp. 279–308. Kluwer Academic Publishers, Hingham (2005)Google Scholar
  11. 11.
    Martín-Vide, C., Păun, G., Rozenberg, G.: Membrane systems with carriers. Theoretical Computer Science 270(1,2), 779–796 (2002)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. Journal of Computer and System Sciences 20(3), 295–305 (2002)MATHGoogle Scholar
  13. 13.
    Peeta, S., Ziliaskopoulos, A.: Foundations of Dynamic Traffic Assignment: The Past, the Present and the Future. Networks and Spatial Economics 1(1/4), 233–266 (2001)CrossRefGoogle Scholar
  14. 14.
    Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M.: Generalized communicating P systems. Theoretical Computer Science 404(1,2), 170–184 (2008)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Geoinformatics, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
  2. 2.Department of Computer ScienceVŠB – Technical University of OstravaOstrava – PorubaCzech republic

Personalised recommendations