Chaos in Nitrogen Dioxide Concentration Time Series and Its Prediction

  • Radko Kříž
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 289)


This paper is aimed at analysis of Nitrogen Dioxide (NO2) concentration time series. At first we will estimate the time delay and the embedding dimension, which is needed for the Lyapunov exponent estimation and for the phase space reconstruction. Subsequently we will compute the largest Lyapunov exponent, which is one of the important indicators of chaos. Then we will calculate the 0-1 test for chaos. Finally we will compute predictions using a radial basis function to fit global nonlinear functions to the data. The results indicated that chaotic behaviors obviously exist in NO2 concentration time series.


Chaos theory Nitrogen dioxide Time series analysis Phase space reconstruction Prediction Gaussian radial basis function 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    World Health Organization. Health Aspects of Air Pollution with Particulate Matter, Ozone and Nitrogen Dioxide, p. 48 (January 13-15, 2003)Google Scholar
  2. 2.
    Son, B., Yang, W., Breysse, P., Chung, T., Lee, Y.: Estimation of occupational and nonoccupational nitrogen dioxide exposure for Korean taxi drivers using a micro-environmental model. Environmental Research 94, 291–296 (2004)CrossRefGoogle Scholar
  3. 3.
    Baťa, R., Půlkrábková, P.: The importance of Modelling the Environmental Impacts of a Biomass Based Electric Power Generation for public safety. WSEAS Transactions on Environment & Development 9(4) (2013)Google Scholar
  4. 4.
    Baťa, R., Kadlecová, P.: Modeling of economic and environmental impacts of energy generation using of waste paper. E+ M Ekonomie a Management 2011(2) (2011)Google Scholar
  5. 5.
    Abarbanel, H.D.I.: Analysis of Observed Chaotic Data, 272 p. Springer, New York (1996)CrossRefMATHGoogle Scholar
  6. 6.
    Kantz, H., Schreiber, T.: Nonlinear time series analysis, 304 p. Cambridge University Press, Cambridge (1997)Google Scholar
  7. 7.
    Miksovsky, J., Raidl, A.: Testing the performance of three nonlinear methods of time series analysis for prediction and downscaling of European daily temperatures. Nonlinear Processes in Geophysics 12(6), 979–991 (2005)CrossRefGoogle Scholar
  8. 8.
    Chelani, A.B., Singh, R.N., Devotta, S.: Nonlinear dynamical characterization and prediction of ambient nitrogen dioxide concentration. Water, Air, and Soil Pollution 166(1-4), 121–138 (2005)CrossRefGoogle Scholar
  9. 9.
    Abarbanel, H.D., Brown, R., Sidorowich, J.J., Tsimring, L.S.: The analysis of observed chaotic data in physical systems. Reviews of Modern Physics 65(4), 1331 (1993)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hájek, P., Olej, V.: Air quality modelling by Kohonen’s self-organizing feature maps and LVQ neural networks. WSEAS Transactions on Environment and Development 4(1), 45–55 (2008)Google Scholar
  11. 11.
    Kolehmainen, M., Martikainen, H., Ruuskanen, J.: Neural networks and periodic components used in air quality forecasting. Atmospheric Environment 35(5), 815–825 (2001)CrossRefGoogle Scholar
  12. 12.
    Baťa, R.: Modeling of LCA-chain segment for Biofuels As an instrument for the protection of the population. WSEAS Transactions on Environment & Development 9(2) (2013)Google Scholar
  13. 13.
    Hájek, P., Olej, V.: Air quality indices and their modelling by hierarchical fuzzy inference systems. WSEAS Transactions on Environment and Development 10, 661–672 (2009)Google Scholar
  14. 14.
    Huszar, P., et al.: Modeling the regional impact of ship emissions on NO x and ozone levels over the Eastern Atlantic and Western Europe using ship plume parameterization. Atmospheric Chemistry and Physics 10(14), 6645–6660 (2010)CrossRefGoogle Scholar
  15. 15.
    Henry, B., Lovell, N., Camacho, F.: Nonlinear dynamics time series analysis (2001); Akay (ed.)Google Scholar
  16. 16.
    Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick, pp. 366–381. Springer, Heidelberg (1980)Google Scholar
  17. 17.
    Kříž, R.: Chaotic Analysis of the GDP Time Series. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 353–362. Springer, Heidelberg (2013)Google Scholar
  18. 18.
    Kodba, S., Perc, M., Marhl, M.: Detecting chaos from a time series. European Journal of Physics 26(1), 205 (2005)CrossRefGoogle Scholar
  19. 19.
    Fraser, A.M., Swinney, H.L.: Independent coordinates for strange attractors from mutual information. Physical Review A 33(2), 1134 (1986)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Kennel, M.B., Brown, R., Abarbanel, H.D.: Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A 45(6), 3403 (1992)CrossRefGoogle Scholar
  21. 21.
    Lorenz, H.W.: Nonlinear dynamical economics and chaotic motion. Springer, Berlin (1993)CrossRefMATHGoogle Scholar
  22. 22.
    Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena 65(1), 117–134 (1993)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Kříž, R., Kratochvíl, Š.: Analyses of the Chaotic Behavior of the Electricity Price Series. In: ISCS 2013: Interdisciplinary Symposium on Complex Systems, pp. 215–226. Springer, Heidelberg (2014)Google Scholar
  24. 24.
    Grassberger, P., Procaccia, I.: Characterization of strange attractors. Physical Review Letters 50(5), 346–349 (1983)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Schreiber, T.: Interdisciplinary application of nonlinear time series methods. Physics Report 308(1), 1–64 (1999)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: The TISEAN package. Chaos 9(2), 413–435 (1999)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Cohen, A., Procaccia, I.: Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems. Phys. Rev. A 31, 1872 (1985)CrossRefGoogle Scholar
  28. 28.
    Gottwald, G.A., Melbourne, I.: A new test for chaos in deterministic systems. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 460(2042), 603–611 (2004)CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Dawes, J.H.P., Freeland, M.C.: The ‘0–1 test for chaos’ and strange nonchaotic attractors (2008) (preprint)Google Scholar
  30. 30.
    Farmer, D.J., Sidorowich, J.J.: Predicting chaotic time series. Phys. Rev. Lett. 59, 845–848 (1987)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of PardubicePardubiceCzech Republic

Personalised recommendations