Advertisement

Mathematical Models of Multivariable Systems

  • Vladimír Jehlička
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 289)

Abstract

The paper is focused on the build of a mathematical models of multivariable systems by the method of experimental identification. The created model is used for predicting the static and dynamic behavior of the controlled system in the closed loop. Dynamic properties of systems are described by the differential equations. In the experimental part are identified the parameters of the mathematical model of rectifying column. As an example, the multivariable controlled system, in this case is described the dependence of concentration distilled mixture on change the flow of reflux and flow of vapor.

Keywords

Mathematical models multivariable systems experimental identification rectification column 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang, J., Wang, H.-W., Gu, H.: A novel recursive subspace identification approach of closed-loop systems. Mathematical and Computer Modelling of Dynamical Systems 19(6), 526–539 (2013), http://www.tandfonline.com/doi/abs/10.1080/13873954.2013.801355 (cited), doi:10.1080/13873954.2013.801355CrossRefMathSciNetGoogle Scholar
  2. 2.
    Chen, L., Tulsyan, A., Huang, B., Liu, F.: Multiple model approach to nonlinear system identification with an uncertain scheduling variable using EM algorithm. Journal of Process Control. 23(10), 1480–1496 (2013), http://linkinghub.elsevier.com/retrieve/pii/S0959152413001820 (cited), doi:10.1016/j.jprocont.2013.09.013 CrossRefGoogle Scholar
  3. 3.
    Cadavid, J.G., Godoy-Silva, R.D., Narvaez, P.C., Camargo, M., Fonteix, C.: Biodiesel production in a counter-current reactive extraction column: Modelling, parametric identification and optimisation. Chemical Engineering Journal 228, 717–723 (2013), http://linkinghub.elsevier.com/retrieve/pii/S1385894713006591 (cited), doi:10.1016/j.cej.2013.05.040CrossRefGoogle Scholar
  4. 4.
    Torkamani, S., Butcher, E.A., Khasawneh, F.A.: Parameter identification in periodic delay differential equations with distributed delay. Communications in Nonlinear Science and Numerical Simulation 18(4), 1016–1026 (2013), http://linkinghub.elsevier.com/retrieve/pii/S1007570412004182 (cited), doi:10.1016/j.cnsns.2012.09.001CrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Abbassi, F., Belhadj, T., Mistou, S., Zghal, A.: Parameter identification of a mechanical ductile damage using Artificial Neural Networks in sheet metal forming. Materials 45, 605–615 (2013), http://linkinghub.elsevier.com/retrieve/pii/S0261306912006632 (cited), doi:10.1016/j.matdes.2012.09.032Google Scholar
  6. 6.
    Victor, S., Malti, R., Garnier, H., Oustaloup, A.: Parameter and differentiation order estimation in fractional models. Automatica 49(4), 926–935 (2013), http://linkinghub.elsevier.com/retrieve/pii/S0005109813000277 (cited), doi:10.1016/j.automatica.2013.01.026CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Valderrama, J.O., Faúndez, C.A., Toselli, L.A.: Advances on modeling and simulation of alcoholic distillation. Part 1: Thermodynamic modeling. Food and Bioproducts Processing 90(4), 819–831 (2000), http://linkinghub.elsevier.com/retrieve/pii/S0960308512000302 (dostupné), doi:10.1016/j.fbp.2012.04.004
  8. 8.
    Valderrama, J.O., Toselli, L.A., Faúndez, C.A.: Advances on modeling and simulation of alcoholic distillation. Part 2: Process simulation. Food and Bioproducts Processing 90(4), 832–840 (2000), http://linkinghub.elsevier.com/retrieve/pii/S0960308512000296 (dostupné), doi:10.1016/j.fbp.2012.04.003CrossRefGoogle Scholar
  9. 9.
    Isermann, R.: Digitale Regelsysteme: Band II, Stochastische Regelungen, Mehrgrössenregelungen, Adaptive Regelunungen, Anwendungen. 2. überarb. u. erw. Aufl. Springer, Berlin (1987) ISBN 35-401-6597-5Google Scholar
  10. 10.
    Isermann, R.: Digitale Regelsysteme: Band I, Grundlagen Deterministische Regelungen. 2. überarb. und erw. Aufl. Springer, Berlin (1987) ISBN 35-401-6596-7Google Scholar
  11. 11.
    Jehlička, V.: Mathematical Models of Controlled Systems. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 257–264. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vladimír Jehlička
    • 1
  1. 1.Jan Perner Transport Faculty, Department of Informatics in TransportUniversity of PardubicePardubiceCzech Republic

Personalised recommendations