Prediction Based Context Data Dissemination and Storage Model for Cooperative Vehicular Networks

  • Mindaugas Kurmis
  • Dale Dzemydiene
  • Arunas Andziulis
  • Miroslav Voznak
  • Sergej Jakovlev
  • Zydrunas Lukosius
  • Gediminas Gricius
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 289)

Abstract

The vehicle as the context information source generates a huge amount of different information including from physical vehicle and environment sensors. The implementation of an efficient and scalable model for information dissemination in VANETs confronts with major problems. In this dynamic environment, an increasing number of context dissemination messages are increasing channels utilization which affects the network performance. This article discusses analyses and assesses the key proposals how to deal with the context data dissemination and how to decrease the amounts of transferred and stored data in vehicular cooperation environment. This is one of the most important topics of the pervasive computing.

Keywords

context data dissemination storage vehicular communication net-works VANET 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Savran, A., Tasaltin, R., Becerikli, Y.: Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks. ISA Transactions 45(2), 225–247 (2006) CrossRef CrossRefGoogle Scholar
  2. 2.
    Ali, G., Chan, E., Li, W.: Supporting real-time multiple data items query in multi-RSU vehicular ad hoc networks (VANETs). Journal of Systems and Software 86(8), 2127–2142 (2006)CrossRefGoogle Scholar
  3. 3.
    Al-Sultan, S., et al.: A comprehensive survey on vehicular Ad Hoc network. Journal of Network and Computer Applications 37, 380–392 (2014)CrossRefGoogle Scholar
  4. 4.
    Barberis, C., Malnati, G.: Design and evaluation of a collaborative system for content diffusion and retrieval in vehicular networks. IEEE Transactions on Consumer Electronics 57(1), 105–112 (2011)CrossRefGoogle Scholar
  5. 5.
    Cheng, H.T., Shan, H., Zhuang, W.: Infotainment and road safety service support in vehicular networking: From a communication perspective. Mechanical Systems and Signal Processing 25(6), 2020–2038 (2011)CrossRefGoogle Scholar
  6. 6.
    Delot, T., Cenerario, N., Ilarri, S.: Vehicular event sharing with a mobile peer-to-peer architecture. Transportation Research Part C: Emerging Technologies 18(4), 584–598 (2010)CrossRefGoogle Scholar
  7. 7.
    Kurmis, M., et al.: Development of the Real Time Situation Identification Model for Adaptive Service Support in Vehicular Communication Networks Domain. Advances in Electrical and Electronic Engineering 11(5), 342–348 (2013)Google Scholar
  8. 8.
    Liu, K., Lee, V.C.S.: Adaptive data dissemination for time-constrained messages in dynamic vehicular networks. Transportation Research Part C: Emerging Technologies 21(1), 214–229 (2012)CrossRefGoogle Scholar
  9. 9.
    Sharef, B.T., Alsaqour, R.A., Ismail, M.: Vehicular communication ad hoc routing protocols: A survey. Journal of Network and Computer Applications 40, 363–396 (2014)CrossRefGoogle Scholar
  10. 10.
    Talebifard, P., Leung, V.C.M.: Towards a content-centric approach to crowd-sensing in vehicular clouds. Journal of Systems Architecture 59(10), 976–984 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mindaugas Kurmis
    • 1
    • 2
  • Dale Dzemydiene
    • 1
  • Arunas Andziulis
    • 2
  • Miroslav Voznak
    • 3
  • Sergej Jakovlev
    • 2
  • Zydrunas Lukosius
    • 2
  • Gediminas Gricius
    • 2
  1. 1.Institute of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  2. 2.Department of Informatics EngineeringKlaipeda UniversityKlaipedaLithuania
  3. 3.Department of TelecommunicationsVSB - Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations