LMI Approach of Constrained Fuzzy Model Predictive Control of DC-DC Boost Converter

  • S. Bououden
  • M. Chadli
  • Ivan Zelinka
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 289)

Abstract

In this paper, we propose a fuzzy model predictive control (FMPC) using Linear matrix inequalities (LMIs) approach for the voltage tracking control of a DC-DC Boost converter. A mathematical model is required to synthesis this controller, the typically used model is the averaged model, which describes the converter behavior on the operating point. Boost converter has a nonlinear dynamic behavior; the Takagi–Sugeno (T–S) fuzzy model is used to represent the state-space model of nonlinear system where the consequent part of the fuzzy rule is replaced by linear systems. Based on this model, we formulate and solve a constrained optimal control problem using linear matrix inequalities approach.

Keywords

Predictive controller non-linear systems Boost converter averaged model LMI approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Guldemir, H.: Modeling and Sliding Mode Control of Dc-Dc Buck-Boost Converter. In: 6th International Advanced Technologies Symposium (IATS 2011), Elazığ, Turkey, May 16-18 (2011)Google Scholar
  2. 2.
    Ahmad, A., Zhiliu, K., Kinoshita, H.: High Performance Algorithms for the Control of Buck DC-DC Converters. International Journal of Engineering Science and Technology 2(10), 5799–5812 (2010)Google Scholar
  3. 3.
    Inglés, J.V., Garcés, P., Leyva, R.: Robust LMI Control of a Buck-Boost Converter with Low Ripple Propagation. Preprints of the 2012 20th Mediterranean Conference on Control & Automation (MED), Barcelona, Spain, July 3-6 (2012)Google Scholar
  4. 4.
    García, C.E., Prett, D.M., Morari, M.: Model predictive control: Theory and practice, a survey. Automatica 25, 335–348 (1989)CrossRefMATHGoogle Scholar
  5. 5.
    Tatjewski, P., Nczuk, M.: Soft Computing in Model–Based Predictive Control. Int. J. Appl. Math. Comput. Sci. 16(1), 7–26 (2006)MathSciNetGoogle Scholar
  6. 6.
    Bououden, S., Chadli, M., Filali, S., El Hajjaji, A.: Fuzzy Model Based Multivariable Predictive Control of a Variable Speed Wind Turbine: LMI approach. Renewable Energy 37(1), 434–439 (2012)CrossRefGoogle Scholar
  7. 7.
    Carneiro, G.L., Galvão, R.K.H.: Model Based Predictive Control of an Aircraft with Actuator Failure in a Terrain Following Task. In: 3rd CTA-DLR Workshop on Data Analysis & Flight Control, S. J. Campos, SP, Brazil, September 14-16 (2009)Google Scholar
  8. 8.
    Hichem, B., Faouzi, M.: Fast Nonlinear Model Predictive Control using Second Order Valera Models Based Multi-agent Approach. Institut Supérieur Des Etudes Technologiques de SFAX Ecole Nationale d’ingénieur de Monastir TunisiaGoogle Scholar
  9. 9.
    Lazar, M., Roset, B.J.P., Heemels, W.P.M.H., Nijmeijer, H., van den Bosch, P.P.J.: Input-To-State Stabilizing Sub-Optimal Nonlinear MPC Algorithms with an Application to DC-DC Converters. In: IFAC 2006 (2006)Google Scholar
  10. 10.
    Leung, F.H.F., Tam, P.K.S., Li, C.K.: The Control of Switching DC-DC Converters – A General LQR Problem. IEEE Transactions on Industrial Electronics 38, 65–71 (1991)CrossRefGoogle Scholar
  11. 11.
    Sira-Ramirez, H., Perez-Moreno, R.A., Ortega, R., Garcia-Esteban, M.: Passivity-based controllers for the stabilization of DC-to-DC power converters. Automatica 33, 499–513 (1997)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Sira-Ramirez, H.: On the Generalized PI Sliding Mode Control of DC-to-DC Power Converters: A Tutorial. International Journal of Control 76, 1018–1033 (2003)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics 15, 116–132 (1985)CrossRefMATHGoogle Scholar
  14. 14.
    Tanaka, K., Wang, H.O.: Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach. Wiley, New York (2001)CrossRefGoogle Scholar
  15. 15.
    Mahabir, K., Verghese, G., Thottuvelil, J., Heyman, A.: Linear averaged and sampled data models for large signal control of high power factor converter. In: Proceedings of IEEE Power Electronics Specialists Conference, San Antonio, Texas, pp. 372–381 (1990)Google Scholar
  16. 16.
    Bououden, S., Chadli, M., Filali, S., El Hajjaji, A.: Fuzzy Model Based Multivariable Predictive Control of a Variable Speed Wind Turbine: LMI approach. Renewable Energy 37(1), 434–439 (2012)CrossRefGoogle Scholar
  17. 17.
    Bououden, S., Benelmir, O., Ziani, S., Filali, S.: A new adaptive fuzzy model and output terminal constraints in predictive control. International Journal of Information and Systems Sciences 3(1), 25–35 (2007)MATHGoogle Scholar
  18. 18.
    Miller, A., Muljadi, E., Zinger, D.S.: A variable speed wind turbine power control, Energy Conversion. IEEE Transaction on Power Electronics 12(2), 181–186 (1997)Google Scholar
  19. 19.
    Nakamura, T., Morimoto, S., Sanada, M., Takeda, Y.: Optimum control of IPMSG for wind generation system. In: Power Conversion Conference, vol. 3, pp. 1435–1440 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • S. Bououden
    • 1
    • 2
  • M. Chadli
    • 3
  • Ivan Zelinka
    • 4
  1. 1.Faculty of sciences and technologyUniversity of Abbes Laghrour KhenchelaKhenchelaAlgeria
  2. 2.Laboratory of automatic and roboticUniversity Constantine1ConstantineAlgeria
  3. 3.University of Picardie Jules VerneAmiensFrance
  4. 4.Faculty of Electrical Engineering and Computer ScienceVŠB-TUOOstrava-PorubaCzech Republic

Personalised recommendations