Estimations of Initial Errors Growth in Weather Prediction by Low-dimensional Atmospheric Model

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 289)

Abstract

Initial errors in weather prediction grow in time. As errors become larger, their growth slows down and then stops at an asymptotic value. Time of reaching this value represents the limit of predictability. Other time limits that measure the error growth are doubling time τ d, and times when the forecast error reaches 95%, 71%, 50%, and 25% of the limit of predictability. This paper studies asymptotic value and time limits in a low-dimensional atmospheric model for five initial errors, using ensemble prediction method as well as error approximation by quadratic and logarithmic hypothesis. We show that quadratic hypothesis approximates the model data better for almost all initial errors and time lengths. We also demonstrate that both hypotheses can be further improved to achieve even better match of the asymptotic value and time limits with the model.

Keywords

Chaos Atmosphere Prediction Error growth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lorenz, E.N.: The Predictability of Flow which Possesses Many Scale of Motion. Tellus 21, 289–307 (1969)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Savijärvi, H.: Error Growth in a Large Numerical Forecast System. Mon. Weather Rev. 123, 212–221 (1995)CrossRefGoogle Scholar
  3. 3.
    Lorenz, E.N.: Atmospheric predictability as revealed by naturally occurring analogs. J. Atmos. Sci. 26, 636–646 (1969)CrossRefGoogle Scholar
  4. 4.
    Lorenz, E.N.: Atmospheric predictability experiments with a large numerical model. Tellus 34, 505–513 (1982)CrossRefGoogle Scholar
  5. 5.
    Dalcher, A., Kalney, E.: Error Growth and Predictability in Operational ECMWF Analyses. Tellus 39A, 474–491 (1987)CrossRefGoogle Scholar
  6. 6.
    Simmons, A.J., Mureau, R., Petroliagis, T.: Error Growth and Estimates of Predictability from the ECMWF Forecasting System. Q. J. R. Meteorol. Soc. 121, 1739–1771 (1995)CrossRefGoogle Scholar
  7. 7.
    Trevisan, A., Malguzzi, P., Fantini, M.: A Note on Lorenz’s Law for the Growth of Large and Small Errors in the Atmosphere. J. Atmos. Sci. 49, 713–719 (1992)CrossRefGoogle Scholar
  8. 8.
    Froude, L.S.R., Bengtsson, L., Hodges, K.I.: Atmospheric Predictability Revisited. Tellus A 65, 1–13 (2013)CrossRefGoogle Scholar
  9. 9.
    Buzzia, R.: Horizontal Resolution Impact on Short- and Long-range Forecast Error. Q. J. R. Meteorol. Soc. 136, 1020–1035 (2010)CrossRefGoogle Scholar
  10. 10.
    Bengtosson, L.K., Magnusson, L., Källén, E.: Independent Estimations of the Asymptotic Variability in an ensemble Forecast System. Mon. Weather Rev. 136, 4105–4112 (2008)CrossRefGoogle Scholar
  11. 11.
    Ma, J., Zhu, Y., Wobus, R., Wang, P.: An Effective Configuration of Ensemble Size and Horizontal Resolution for the NCEP GEFS. Advances in Atm. Sci. 29, 782–794 (2012)CrossRefGoogle Scholar
  12. 12.
    Lorenz, E.N.: Designing Chaotic Models. J. Atmos. Sci. 62, 1574–1587 (2005)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Palmer, T., Hagedorm, R.: Predictability of Weather and Climate. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  14. 14.
    Lorenz, E.N.: Predictability: A Problem Partly Solved. In: Proc. Seminar on Predictability, vol. 1, pp. 1–18. CMWF, Reading (1996); Reprinted in Palmer T., Hagegorn R.: Predictability of Weather and Climate, 718 p. Cambridge University Press (2006)Google Scholar
  15. 15.
    Lorenz, E.N.: Deterministic Nonperiodic Flow. J. Atmos. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  16. 16.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press, New York (2003)MATHGoogle Scholar
  17. 17.
    Trevisan, A.: Impact of transient error growth on global average predictability measures. J. Atmos. Sci. 50, 1016–1028 (1993)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Ruiqing, D., Jianping, L.: Comparisons of Two Ensemble Mean Methods in Measuring the Average Error Growth and the Predictability. Acta Meteorologica Sinica 25, 395–404 (2011)CrossRefGoogle Scholar
  19. 19.
    Benzi, R., Carnevale, F.C.: A Possible Measure of Local Predictability. J. Atmos. Sci. 46, 3595–3598 (1989)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Bednar, H., Raidl, A., Miksovsky, J.: Initial Errors Growth in Chaotic Low-dimensional Weather Prediction Model. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 333–342. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Bednář, H., Raidl, A., Mikšovský, J.: Initial Error Growth and Predictability of Chaotic Low-dimensional Atmospheric Model. International Journal of Automation and Computing (in press, 2014)Google Scholar
  22. 22.
    Trevisan, A., Pancotti, F., Molteni, F.: Ensemble Prediction in a Model with Flow Regimes. Quart. J. Roy. Meteor. Soc. 127, 343–358 (2001)CrossRefGoogle Scholar
  23. 23.
    Bengtsson, L., Hodges, K.: I. A Note on Atmospheric Predictability. Tellus 58A, 154–157 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hynek Bednář
    • 1
  • Aleš Raidl
    • 1
  • Jiří Mikšovský
    • 1
  1. 1.Department of Meteorology and Environment Protection, Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic

Personalised recommendations