A New Approach to Modeling of Bio-inspired Information Diffusion with Ant Colony Optimization in Complex Networks

Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 289)

Abstract

This paper proposed a bio-inspired model for information diffusion in complex networks using ant colony optimization. This model introduces selfishness in forwarder nodes and unacquainted nodes. Ant colony optimization important parts are finding shortest path and managing the selfish nodes and disjoined nodes. The proposed approach is simulated in two types of networks: lattice network and scale free network. The simulation results show that the proposed approach has higher performance and higher reachability than epidemic model.

Keywords

Bio-inspired information diffusion ant colony optimization complex networks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Newman, M.E.J.: Scientific collaboration networks: I. network construction and fundamental results. Phys. Rev. E 64, 16131 (2001)CrossRefGoogle Scholar
  2. 2.
    Wang, X.F., Chen, G.: Complex networks: small-world, scale-free and beyond. IEEE Circuits and Systems Magazine 3(1), 6–20 (2003)CrossRefGoogle Scholar
  3. 3.
    Watts, D., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature (393), 440–442 (1998)Google Scholar
  4. 4.
    Milgram, S.: The small world problem. Psychology Today 61, 60–67 (1967)Google Scholar
  5. 5.
    Barrenetxea, G., Berefull-Lozano, B., Vetterli, M.: Lattice networks: capacity limits, optimal routing, and queueing behavior. IEEE/ACM Transactions on Networking 14(3), 492–505 (2006)CrossRefGoogle Scholar
  6. 6.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Yook, S., Jeong, H., Barabási, A.L.: Modeling the internet’s large-scale topology. PNAS 99, 13382–13386 (2002)CrossRefGoogle Scholar
  8. 8.
    Zhang, X., Neglia, G., Kurose, J., Towsley, D.: Performance modeling of epidemic routing. Comput. Netw. 51(10), 2867–2891 (2007)CrossRefMATHGoogle Scholar
  9. 9.
    Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks. Phys. Rev. E 61, 5678–5682 (2000)CrossRefGoogle Scholar
  10. 10.
    Zhou, T., Liu, J.G., Bai, W.J., Chen, G., Wang, B.H.: Behaviors of susceptible-infected epidemics on scale-free networks with identical infectivity. Phys. Rev. E 74, 056109 (2006)CrossRefGoogle Scholar
  11. 11.
    Xinli, H.: Threshold dynamics for sir epidemic model in periodic environments. In: 2010 International Conference on Computer Application and System Modeling (ICCASM), vol. 7, pp. V7-41–V7-45 (2010)Google Scholar
  12. 12.
    Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of the 22nd International Symposium on Reliable Distributed Systems, pp. 25–34 (2003)Google Scholar
  13. 13.
    Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200–3203 (2001)CrossRefGoogle Scholar
  14. 14.
    Ye, W., Heidemann, J.S., Estrin, D.: An energy-efficient mac protocol for wireless sensor networks. In: INFOCOM, vol. 3, pp. 1567–1576 (2002)Google Scholar
  15. 15.
    Ephremides, A.: Energy concerns in wireless networks. IEEE Wireless Communications 9(4), 48–59 (2002)CrossRefGoogle Scholar
  16. 16.
    Xu, L., Lin, Z., Ye, A.: Analysis and countermeasure of selfish node problem in mobile ad hoc network. In: 10th International Conference on Computer Supported Cooperative Work in Design, CSCWD 2006, pp. 1–4 (2006)Google Scholar
  17. 17.
    Mohaisen, A., AbuHmed, T., Zhu, T., Mohaisen, M.: Collaboration in social network-based information dissemination. In: 2012 IEEE International Conference on Communications (ICC), pp. 2103–2107 (2012)Google Scholar
  18. 18.
    Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Computational Intelligence Magazine 1(4), 28–39 (2006)CrossRefGoogle Scholar
  19. 19.
    Passarella, A., Conti, M., Boldrini, C., Dunbar, R.I.: Modelling inter-contact times in social pervasive networks. In: Proceedings of the 14th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM 2011, pp. 333–340. ACM, New York (2011)Google Scholar
  20. 20.
    Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 565–574 (2000)Google Scholar
  21. 21.
    Vahdat, A., Becker, D.: Epidemic routing for partially connected ad hoc networks. Technical report (July 2000)Google Scholar
  22. 22.
    Yuan, P., Ma, H.: Impact of infection rate on scaling law of epidemic routing. In: 2012 IEEE Wireless Communications and Networking Conference (WCNC), pp. 2934–2939 (2012)Google Scholar
  23. 23.
    Ramanathan, R., Hansen, R., Basu, P., Rosales-Hain, R., Krishnan, R.: Prioritized epidemic routing for opportunistic networks. In: Proceedings of the 1st International MobiSys Workshop on Mobile Opportunistic Networking, MobiOpp 2007, pp. 62–66. ACM, New York (2007)CrossRefGoogle Scholar
  24. 24.
    Spyropoulos, T., Psounis, K., Raghavendra, C.: Single-copy routing in intermittently connected mobile networks. In: 2004 First Annual IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks, IEEE SECON 2004, pp. 235–244 (2004)Google Scholar
  25. 25.
    Boldrini, C., Conti, M., Passarella, A.: Modelling data dissemination in opportunistic networks. In: Proceedings of the Third ACM Workshop on Challenged Networks, CHANTS 2008, pp. 89–96. ACM, New York (2008)CrossRefGoogle Scholar
  26. 26.
    Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 2, pp. 1470–1477 (1999)Google Scholar
  27. 27.
    Li, Q., Zhu, S., Cao, G.: Routing in socially selfish delay tolerant networks. In: 2010 Proceedings IEEE INFOCOM, pp. 1–9 (2010)Google Scholar
  28. 28.
    Li, Y., Su, G., Wu, D., Jin, D., Su, L., Zeng, L.: The impact of node selfishness on multicasting in delay tolerant networks. IEEE Transactions on Vehicular Technology 60(5), 2224–2238 (2011)CrossRefGoogle Scholar
  29. 29.
    Sermpezis, P., Spyropoulos, T.: Information diffusion in heterogeneous networks: The configuration model approach. In: 2013 Proceedings IEEE INFOCOM, pp. 3261–3266 (2013)Google Scholar
  30. 30.
    Ling, X., Hu, M.B., Jiang, R., Wang, R., Cao, X.B., Wu, Q.S.: Pheromone routing protocol on a scale-free network. Phys. Rev. E 80, 066110 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer EngineeringKumoh National Institute of TechnologyGumiSouth Korea

Personalised recommendations