Multi-chaotic Differential Evolution: Determining the Switching Time

  • Roman Senkerik
  • Michal Pluhacek
  • Ivan Zelinka
  • Donald Davendra
  • Zuzana Kominkova Oplatkova
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 289)


This research deals with the hybridization of the two softcomputing fields, which are chaos theory and evolutionary computation. This paper aims on the deeper investigations on the multi-chaos-driven evolutionary algorithm Differential Evolution (DE) concept. This research is aimed at the embedding and alternating of set of two discrete dissipative chaotic systems in the form of chaos pseudo random number generators for the DE. In this paper the novel initial concept of DE/rand/1/bin strategy driven alternately by two chaotic maps (systems) is deeply investigated in terms of determining the optimal switching moment of two different chaotic systems. From the previous research, it follows that very promising results were obtained through the utilization of different chaotic maps, which have unique properties with connection to DE. The idea is then to connect these two different influences to the performance of DE into the one multi-chaotic concept. Repeated simulations were performed on the selected shifted benchmark function in higher dimensions. Finally, the obtained results are compared with canonical DE.


Differential Evolution Deterministic chaos Dissipative systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Price, K.V.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill Ltd. (1999)Google Scholar
  2. 2.
    Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization. IEEE Transactions on Evolutionary Computation 13(2), 398–417 (2009)CrossRefGoogle Scholar
  3. 3.
    Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing 11(2), 1679–1696 (2011)CrossRefGoogle Scholar
  4. 4.
    Aydin, I., Karakose, M., Akin, E.: Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection. Expert Systems with Applications 37(7), 5285–5294 (2010)CrossRefGoogle Scholar
  5. 5.
    Liang, W., Zhang, L., Wang, M.: The chaos differential evolution optimization algorithm and its application to support vector regression machine. Journal of Software 6(7), 1297–1304 (2011)CrossRefGoogle Scholar
  6. 6.
    Zhenyu, G., Bo, C., Min, Y., Binggang, C.: Self-Adaptive Chaos Differential Evolution. In: Jiao, L., Wang, L., Gao, X.-B., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4221, pp. 972–975. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers & Mathematics with Applications 60(4), 1088–1104 (2010)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    dos Santos Coelho, L., Mariani, V.C.: A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch. Chaos, Solitons & Fractals 39(2), 510–518 (2009)CrossRefGoogle Scholar
  9. 9.
    Davendra, D., Bialic-Davendra, M., Senkerik, R.: Scheduling the Lot-Streaming Flowshop scheduling problem with setup time with the chaos-induced Enhanced Differential Evolution. In: 2013 IEEE Symposium on Differential Evolution (SDE), April 16-19, pp. 119–126 (2013)Google Scholar
  10. 10.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Computers & Mathematics with Applications 66(2), 122–134 (2013)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Pluhacek, M., Senkerik, R., Zelinka, I., Davendra, D.: Chaos PSO algorithm driven alternately by two different chaotic maps - An initial study. In: 2013 IEEE Congress on Evolutionary Computation (CEC), June 20-23, pp. 2444–2449 (2013)Google Scholar
  12. 12.
    Gandomi, A.H., Yang, X.S., Talatahari, S., Alavi, A.H.: Firefly algorithm with chaos. Communications in Nonlinear Science and Numerical Simulation 18(1), 89–98 (2013)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Senkerik, R., Pluhacek, M., Zelinka, I., Oplatkova, Z.K., Vala, R., Jasek, R.: Performance of Chaos Driven Differential Evolution on Shifted Benchmark Functions Set. In: Herrero, A., et al. (eds.) International Joint Conference SOCO’13-CISIS’13-ICEUTE’13. AISC, vol. 239, pp. 41–50. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  14. 14.
    Senkerik, R., Davendra, D., Zelinka, I., Pluhacek, M., Kominkova Oplatkova, Z.: On the Differential Evolution Drivan by Selected Discrete Chaotic Systems: Extended Study. In: 19th International Conference on Soft Computing, MENDEL 2013, pp. 137–144 (2013)Google Scholar
  15. 15.
    Lozi, R.: Engineering of Mathematical Chaotic Circuits. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 17–29. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution - A Practical Approach to Global Optimization. Natural Computing Series. Springer, Heidelberg (2005)MATHGoogle Scholar
  17. 17.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Roman Senkerik
    • 1
  • Michal Pluhacek
    • 1
  • Ivan Zelinka
    • 2
  • Donald Davendra
    • 2
  • Zuzana Kominkova Oplatkova
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations