Chaos Level Measurement in Logistic Map Used as the Chaotic Numbers Generator in Differential Evolution

  • Lenka Skanderova
  • Ivan Zelinka
  • Tran Trong Dao
  • Duy Vo Hoang
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 289)

Abstract

In present time some researchers use chaotic numbers generators in evolutionary algorithms like differential evolution, SOMA or particle swarm optimization. These chaotic numbers generators are based on chaotic discrete systems which replace pseudorandom numbers generators like Mersenne Twister, Xorshift etc. In this paper we will investigate the influence of chaos level in logistic map which is used as chaotic numbers generator to the convergence’s speed of differential evolution to the global minimum of testing functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zelinka, I., Celikovsky, S., Richter, H., Chen, G. (eds.): Evolutionary Algorithms and Chaotic Systems. SCI, vol. 267. Springer, Heidelberg (2010)MATHGoogle Scholar
  2. 2.
    Alligood, K., Sauer, T.D., Yorke, J.A.: CHaos - an introduction to dynamical systems. Textobooks in Mathematical Sciences, vol. 1197. Springer - Verlag New York, Inc. (1996) ISBN 0- 987-94677-2Google Scholar
  3. 3.
    Venske, S.M., et al.: ADEMO/D: Multiobjective optimization by an adaptive differential evolution algorithm. Neurocomputing 127, 65–77 (2014)CrossRefGoogle Scholar
  4. 4.
    Gao, F., et al.: Identification time-delayed fractional order chaos with functional extrema model via differential evolution. Expert Systems with Applications 41, 1601–1608 (2014)CrossRefGoogle Scholar
  5. 5.
    Zeng, N.Y., et al.: A novel switching local evolutionary PSO for quantitative analysis of lateral flow immunoassay. Expert Systems with Applications 41, 1708–1715 (2014)CrossRefGoogle Scholar
  6. 6.
    Locatelli, M., et al.: Differential evolution methods based on local searches. Computers & Operations Research 43, 169–180 (2014)CrossRefGoogle Scholar
  7. 7.
    Ghosh, A., et al.: Moving object detection using Markov Random Field and Distributed Differential Evolution. Applied Soft Computing 15 (February 2014)Google Scholar
  8. 8.
    Gong, W.Y., et al.: Repairing the crossover rate in adaptive differential evolution. Applied Soft Computing 15, 149–168 (2014)CrossRefGoogle Scholar
  9. 9.
    Oplatkova, Z.K., et al.: Analytic programming in the task of evolutionary synthesis of a controller for high order oscillations stabilization of discrete chaotic systems. Computers & Mathematics with Applications 66, 177–189 (2013)CrossRefGoogle Scholar
  10. 10.
    Senkerik, R., et al.: Investigation on the Differential Evolution Driven by Selected Six Chaotic Systems in the Task of Reactor Geometry Optimization. In: 2013 IEEE Congress on Evolutionary Computation (CEC), pp. 3087–3094 (2013)Google Scholar
  11. 11.
    Senkerik, R., Davendra, D., Zelinka, I., Pluhacek, M., Kominkova Oplatkova, Z.: Chaos Driven Differential Evolution with Lozi Map in the Task of Chemical Reactor Optimization. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 56–66. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Senkerik, R.: On the Evolutionary Optimization of Chaos Control - A Brief Survey. In: Zelinka, I., Snasel, V., Rössler, O.E., Abraham, A., Corchado, E.S. (eds.) Nostradamus: Mod. Meth. of Prediction, Modeling. AISC, vol. 192, pp. 35–48. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Senkerik, R., Oplatkova, Z., Zelinka, I.: Evolutionary Synthesis of Control Rules by Means of Analytic Programming for the Purpose of High Order Oscillations Stabilization of Evolutionary Synthesized Chaotic System. In: Zelinka, I., Snasel, V., Rössler, O.E., Abraham, A., Corchado, E.S. (eds.) Nostradamus: Mod. Meth. of Prediction, Modeling. AISC, vol. 192, pp. 191–201. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  14. 14.
    Cheng, K.J., et al.: Period 3 and Chaos for Unimodal Maps. Discrete and Continuous Dynamical Systems 34, 1933–1949 (2014)MATHMathSciNetGoogle Scholar
  15. 15.
    Yang, D.X., et al.: Chaos optimization algorithms based on chaotic maps with different probability distribution and search speed for global optimization. Communications in Nonlinear Science and Numerical Simulation 19, 1229–1246 (2014)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Ke, Q., Oommen, B.J.: Logistic Neural Networks: Their chaotic and pattern recognition properties. Neurocomputing 125, 184–194 (2014)CrossRefGoogle Scholar
  17. 17.
    Wu, G.C., Baleanu, D.: Discrete fractional logistic map and its chaos. Nonlinear Dynamics 75, 283–287 (2014)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Lenka Skanderova
    • 1
  • Ivan Zelinka
    • 1
    • 2
  • Tran Trong Dao
    • 2
  • Duy Vo Hoang
    • 2
  1. 1.Department of Computer ScienceVSB - Technical university of OstravaOstrava - PorubaCzech Republic
  2. 2.MERLINTon Duc Thang UniversityHo Chi Minh CityVietnam

Personalised recommendations