Skip to main content

The Effect of Dynamic Loading from Routine Activities on Mechanical Behavior of the Total Hip Arthroplasty

  • Chapter
  • First Online:
Design and Computation of Modern Engineering Materials

Abstract

Dynamic loads from routine activities applied to the stem create dynamic stresses varying in time and resulting in the fatigue failure of the prosthesis components. Therefore, a finite element model can be used to predict mechanical failure. The purpose of this study was to develop a three-dimensional model of the cemented hip femoral prosthesis and to carry out finite element analysis to evaluate stress distributions in the bone, the cement and the implant compounds under dynamic loads from different human activities. Linear elastic analysis is adapted; von Mises stress, normal stress and shear stress are the values that are of concern. Results show that the stresses distribution in the femoral arthroplasty components depends on the human activity. The analysis also showed that the stresses are high in the proximal and distal parts of the cement mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stolk, J.: A Computerized Pre-Clinical Test for Cemented Hip Prostheses Based on Finite Element Techniques. Thesis University of Nijmegen, The Netherlands With summary in Dutch, p. 192 (2002)

    Google Scholar 

  2. Brekelmans, W., Poort, H., Sloof, T.: A new method to analyse the mechanical behavior of skeletal parts. Acta Orthop. Scand. 43, 301–317 (1972)

    Article  Google Scholar 

  3. Oguz, K., Bulent, E.: The effects of static, dynamic and fatigue behavior on three-dimensional shape optimization of hip prosthesis by finite element method. Mater. Des. 28, 2269–2277 (2007)

    Article  Google Scholar 

  4. Bergmann, G., Deuretzbacher, G., Heller, M., et al.: Hip contact forces and gait patterns from routine activities. J. Biomech. 34, 859–871 (2002)

    Article  Google Scholar 

  5. Stolk, J., Verdonschot, N., Murphy, B.P., et al.: Finite element simulation of anisotropic damage accumulation and creep in acrylic bone cement. Eng. Fract. Mech. 71(4–6), 513–528 (2004)

    Google Scholar 

  6. Huiskes, R.: Failed innovation in total hip replacement diagnosis and proposals for a cure. Acta Orthop. Scand. 64, 699–716 (1993)

    Article  Google Scholar 

  7. Stauffer, R.: Ten-year follow-up study of total hip replacement. J. Bone Joint Surg. 64A, 983–990 (1982)

    Google Scholar 

  8. Gruen, T., McNeice, G., Amstutz, C.: Modes of failure of cemented stem-type femoral components. Clin. Orthop. Relat. Res. 141, 17–27 (1979)

    Google Scholar 

  9. Jasty, M., Maloney, W., Bragdon, C.O., Connor, D., Haire, T., Harris, H.: The initiation of failure in cemented femoral components of hip arthroplasties. J Bone Joint Surg. 73-B, 551–8 (1991)

    Google Scholar 

  10. Prendergast, P.: The functional performance of orthopaedic bone cement. Key Eng. Mater. 198–199, 291–300 (2001)

    Article  Google Scholar 

  11. Stolk, J., Verdonschot, N., Mann, K., et al.: Prevention of mesh-dependent damage growth in finite element simulations of crack formation in acrylic bone cement. J. Biomech. 36, 861–871 (2003)

    Article  Google Scholar 

  12. Zafer, A., Oguz, K., Kurtaran, H.: Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Mater. Des. 28, 1577–1583 (2007)

    Article  Google Scholar 

  13. El’Sheikh, H., et al.: Finite element simulation of the hip joint during stumbling: a comparison between static and dynamic loading. J. Mater. Process. Technol. 143–144, 249–255 (2003)

    Article  Google Scholar 

  14. Osorovitz, P., Goutallier, D.: Résultats cliniques et radiographiques d’une série continue de 124 prothèses totales de hanche type Céraver-Ostéal. Revue de Chirurgie Orthopédique 80, 305–315 (1994)

    Google Scholar 

  15. Nuño, N., Avanzolini, G.: Residual stresses at the stem–cement interface of an idealized cemented hip stem. J. Biomech. 35, 849–852 (2002)

    Article  Google Scholar 

  16. Bergmann, G., Deuretzbacher, G., Heller, M., et al.: Hip contact forces and gait patterns from routine activities. J. Biomech. 34, 859–871 (2001)

    Article  Google Scholar 

  17. Duda, G., et al.: Influence of muscle forces on femoral strain distribution. J. Biomech. 31, 841–846 (1998)

    Article  Google Scholar 

  18. Rohlmann, A., et al.: Finite element analysis and experimental investigation in a femur with hip endoprosthesis. J. Biomech. 16, 727–742 (1983)

    Article  Google Scholar 

  19. Paul, J.:Forces transmitted by joints in the human body. In: Proceedings of the Institution of Mechanical Engineers 181, London (1967)

    Google Scholar 

  20. Paul, J.: The analysis of forces transmitted by joints in the human body. In: Proceedings Fifth International Conference on Stress Analysis (1974)

    Google Scholar 

  21. Paul, J.: Force actions transmitted by joints in the human body. In: Proceedings of the Royal Society of Medicine 163–172 (1975)

    Google Scholar 

  22. Crowninshield, R., Johnston, R., Andrews, J., et al.: A biomechanical investigation of the human hip. J. Biomech. 11, 75–85 (1978)

    Article  Google Scholar 

  23. Crowninshield, R., Brand, R., Johnston, R.: The effect of walking velocity and age on hip kinematics and kinetics. Clin. Orthop. Relat. Res. 132, 140–144 (1978)

    Google Scholar 

  24. Röhrle, H., Scholten, R., Sigolotto, C., et al.: Joint forces in the human pelvis-legskeleton during walking. J. Biomech. 17, 409–424 (1984)

    Article  Google Scholar 

  25. Brand, R., Pedersen, D., Davy, D., et al.: Comparison of hip force calculations and measurements in the same patient. J. Arthroplasty 9, 45–51 (1994)

    Article  Google Scholar 

  26. Pedersen, D., Brand, R., Cheng, C., Arora, J.: Direct comparison of muscle force predictions using linear and nonlinear programming. J. Biomech. Eng. 109, 192–199 (1987)

    Article  Google Scholar 

  27. Heller, M., Bergmann, G., Deuretzbacher, G., Urselen, D., et al.: Musculo-skeletal loading conditions during walking and stair climbing. J. Biomech. 34, 883–893 (2001)

    Article  Google Scholar 

  28. Morlock, M., Schneider, E., Bluhm, A., Vollmer, M., et al.: Duration and frequency of everyday activities in total hip patient. J. Biomech. 34, 873–881 (2001)

    Article  Google Scholar 

  29. Duda, G., Heller, M., Albinger, J., et al.: Influence of muscle forces on femoral strain distribution. J. Biomech. 31, 841–846 (1998)

    Article  Google Scholar 

  30. Lennon, A., Prendergast, P.: Development of a physical model of a cemented hip replacement for investigation of cement damage accumulation. J. Biomech. 31, 129 (1998)

    Article  Google Scholar 

  31. Harrigan, T., Kareh, J., O’Connor, D., Burke, D., et al.: A finite element study of the initiation of failure of fixation in cemented femoral total hip components. J. Orthopaed. Res 10, 134 (1992)

    Article  Google Scholar 

  32. Sahin, S., et al.: The influence of functional forces on the biomechanics of implant-supported prostheses a review. J. Dent. 20, 271–282 (2002)

    Article  Google Scholar 

  33. Koster, et al.: Endoscopy of the femoral canal in revision arthroplasty of the hip. Arch. Orthop. Trauma Surg. 119, 245–252 (1999)

    Article  Google Scholar 

  34. Merckx, D.: Les ciments orthopédiques dans la conception des prothèses articulaires. Biomécanique et biomatériaux, Cahiers d’enseignement de la SOFCOT, Expansion scientifique française 44, 67–76 (1993)

    Google Scholar 

  35. Huiskes, R., Boeklagen, R.: Mathematical shape optimization of hip-prosthesis design. J. Biomech. 22, 793 (1989)

    Article  Google Scholar 

  36. El’Sheikh, H., MacDonald, B., Hashmi, M.: Finite element simulation of the hip joint during stumbling: a comparison between static and dynamic loading. J. Mater. Process. Technol. 143–144, 249–255 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

Author Bel Abbes Bachir Bouiadjra and Abdelmohsen Albedah extends its appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group No. RGP-VPP-035.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mokhtar Bouziane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bouziane, M.M. et al. (2014). The Effect of Dynamic Loading from Routine Activities on Mechanical Behavior of the Total Hip Arthroplasty. In: Öchsner, A., Altenbach, H. (eds) Design and Computation of Modern Engineering Materials. Advanced Structured Materials, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-07383-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07383-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07382-8

  • Online ISBN: 978-3-319-07383-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics