Skip to main content

Cardiovascular Autonomic Neuropathy: Risk Factor or Risk Indicator

  • 1655 Accesses

Abstract

This chapter discusses some more recent articles regarding risk factors and inflammation. There is a significant body of evidence that associates cardiovascular autonomic neuropathy (CAN) with most risk factors and with inflammation. It is known that CAN is associated with increased morbidity and mortality risk. The associations with traditional and nontraditional, as well as modifiable and nonmodifiable, risk factors, including inflammation, have historically made CAN a difficult diagnosis, especially since the perception has been that CAN is not treatable. This chapter concludes by explaining that this perception is not correct and discusses, generally, possible treatment modalities. Within the community of P&S monitoring, CAN has become an important diagnosis to document as early as possible to help avoid increased morbidity and mortality risk that leads to greater medication loads and hospitalization rates, causing greater healthcare costs.

Keywords

  • Sudden Cardiac Death
  • Autonomic Dysfunction
  • Autonomic Neuropathy
  • Parasympathetic Activity
  • Cardiovascular Autonomic Neuropathy

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07371-2_9
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-07371-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.00
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4

References

  1. Tsuji H, Venditti Jr FJ, Manders ES, Evans JC, Larson MG, Feldman CL, Levy D. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994;90(2):878–83.

    CAS  PubMed  CrossRef  Google Scholar 

  2. DePace NL, Mears JP, Yayac M, Colombo J. Cardiac autonomic testing and diagnosing heart disease. “A clinical perspective.” Accepted Heart International. 2014.

    Google Scholar 

  3. DePace NL, Mears JP, Yayac M, Colombo J. Cardiac autonomic testing and treating heart disease. “A clinical perspective.” Accepted Heart International. 2014.

    Google Scholar 

  4. Rosamond W, Flegal K, Furie K, et al. Heart disease and stroke statistics—2008 update. Circulation. 2008;117(4):e25–146.

    PubMed  CrossRef  Google Scholar 

  5. Lloyd-Jones D, Adams RJ, Brown TM, et al. Heart disease and stroke statistics—2010 update. Circulation. 2010;121(7):e46–215.

    PubMed  CrossRef  Google Scholar 

  6. Writing Group Members, Roger VL, Go AS, Lloyd-Jones DM, et al. Executive summary: heart disease and stroke statistics—2012 update. Circulation. 2012;125(1):188–97.

    PubMed  CrossRef  Google Scholar 

  7. U.S. Department of Health and Human Services (HHS). Prevention makes common “Cents”. Washington, DC: U.S. Department of Health and Human Services; 2003. p. 35.

    Google Scholar 

  8. Bangalore S, Steg G, Deedwania P, for the REACH Registry Investigators, et al. β-Blocker use and clinical outcomes in stable outpatients with and without coronary artery disease. JAMA. 2012;308(13):1340–9.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Fau DT, Fau MG, Moore Jr F. Epidemiological approaches to heart disease: the Framingham study. Am J Public Health Nations Health. 1951;41(3):271–81.

    CrossRef  Google Scholar 

  10. Wilson PWF, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998;97(18):1837–47.

    CAS  PubMed  CrossRef  Google Scholar 

  11. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106(25):3143–421.

    Google Scholar 

  12. Meigs JB, Larson MG, D’Agostino RB, et al. Coronary artery calcification in type 2 diabetes and insulin resistance. Diabetes Care. 2002;25(8):1313–9.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Karim R, Hodis HN, Detrano R, Liu CR, Liu CH, Mack WJ. Relation of Framingham risk score to subclinical atherosclerosis evaluated across three arterial sites. Am J Cardiol. 2008;102(7):825–30.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  14. Kannel WB, Evans JC, Piper S, Murabito JM. Angina pectoris is a stronger indicator of diffuse vascular atherosclerosis than intermittent claudication: Framingham study. J Clin Epidemiol. 2008;61(9):951–7.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  15. Oyama N, Gona P, Salton CJ, et al. Differential impact of age, sex, and hypertension on aortic atherosclerosis. Arterioscler Thromb Vasc Biol. 2008;28(1):155–9.

    CAS  PubMed  CrossRef  Google Scholar 

  16. Junyent M, Zambón D, Gilabert R, Núñez I, Cofán M, Ros E. Carotid atherosclerosis and vascular age in the assessment of coronary heart disease risk beyond the Framingham Risk Score. Atherosclerosis. 2008;196(2):803–9.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Ridker PM, Paynter NP, Rifai N, Gaziano JM, Cook NR. C-reactive protein and parental history improve global cardiovascular risk prediction: the Reynolds Risk Score for men. Circulation. 2008;118(22):2243–51.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  18. Kumar V, Abbas AK, Fausto N, Mitchell RS, editors. Robbins basic pathology. 8th ed. Philadelphia: Saunders Elsevier; 2007.

    Google Scholar 

  19. Ahrens EH. Drugs spotlight program: the management of hyperlipidemia: whether, rather than how. Ann Intern Med. 1976;85(1):87–93.

    PubMed  CrossRef  Google Scholar 

  20. Chonchol M, Cook T, Kjekshus J, Pedersen TR, Lindenfeld J. Simvastatin for secondary prevention of all-cause mortality and major coronary events in patients with mild chronic renal insufficiency. Am J Kidney Dis. 2007;49(3):373–82.

    CAS  PubMed  CrossRef  Google Scholar 

  21. Libby P. The forgotten majority: unfinished business in cardiovascular risk reduction. J Am Coll Cardiol. 2005;46(7):1225–8.

    PubMed  CrossRef  Google Scholar 

  22. Pyörälä K, Ballantyne CM, Gumbiner B, et al. Reduction of cardiovascular events by simvastatin in nondiabetic coronary heart disease patients with and without the metabolic syndrome. Diabetes Care. 2004;27(7):1735–40.

    PubMed  CrossRef  Google Scholar 

  23. Crea F, Monaco C, Lanza GA, et al. Inflammatory predictors of mortality in the Scandinavian Simvastatin Survival Study. Clin Cardiol. 2002;25(10):461–6.

    PubMed  CrossRef  Google Scholar 

  24. Robins S. Low high-density lipoprotein cholesterol and response to simvastatin therapy in scandinavian simvastatin survival study (4S). Circulation. 2002;106(2):e8.

    PubMed  CrossRef  Google Scholar 

  25. Wang TJ, Stafford RS, Ausiello JC, Chaisson CE. Randomized clinical trials and recent patterns in the use of statins. Am Heart J. 2001;141(6):957–63.

    CAS  PubMed  CrossRef  Google Scholar 

  26. Pedersen TR, Wilhelmsen L, Faergeman O, et al. Follow-up study of patients randomized in the Scandinavian simvastatin survival study (4S) of cholesterol lowering. Am J Cardiol. 2000;86(3):257–62.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Haffner SM, Alexander CM, Cook TJ, et al. Reduced coronary events in simvastatin-treated patients with coronary heart disease and diabetes or impaired fasting glucose levels: subgroup analyses in the Scandinavian Simvastatin Survival Study. Arch Intern Med. 1999;159(22):2661–7.

    CAS  PubMed  CrossRef  Google Scholar 

  28. Pedersen TR. Coronary artery diseases: the Scandinavian Simvastatin Survival Study experience. Am J Cardiol. 1998;82(10B):53T–6.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Hsia J, MacFadyen JG, Monyak J, Ridker PM. Cardiovascular event reduction and adverse events among subjects attaining low-density lipoprotein cholesterol <50 mg/dl with rosuvastatin: the JUPITER trial (justification for the use of statins in prevention: an intervention trial evaluating rosuvastatin). J Am Coll Cardiol. 2011;57(16):1666–75.

    CAS  PubMed  CrossRef  Google Scholar 

  30. DePace NL, Dowinsky SK. The heart repair manual: the Philadelphia formula program for preventing and reversing atherosclerosis. New York: W.W. Norton & Company; 1993.

    Google Scholar 

  31. Fau FE, Foy AF, Newman E. Goal-directed antihypertensive therapy: lower may not always be better. Cleve Clin J Med. 2011;78(2):123–33.

    CrossRef  Google Scholar 

  32. Gerstein HC, Miller ME, Genuth S, Ismail-Beigi F, Buse JB, Goff Jr DC, Probstfield JL, Cushman WC, Ginsberg HN, Bigger JT, Grimm Jr RH, Byington RP, Rosenberg YD, Friedewald WT on behalf of the ACCORD Study Group. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364(9):818–28.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    PubMed  CrossRef  Google Scholar 

  34. Ewing DJ, Campbell IW, Clarke BF. Assessment of cardiovascular effects in diabetic autonomic neuropathy and prognostic implications. Ann Intern Med. 1980;92(2 Part 2):308–11.

    CAS  PubMed  CrossRef  Google Scholar 

  35. Vinik AI, Maser RE, Nakave AA. Diabetic cardiovascular autonomic nerve dysfunction. US Endocr Dis. 2007;2:2–9.

    Google Scholar 

  36. Maser R, Mitchell B, Vinik AI, Freeman R. The association between cardiovascular autonomic neuropathy and mortality in individuals with diabetes, a meta analysis. Diabetes Care. 2003;26(6):1895–901.

    PubMed  CrossRef  Google Scholar 

  37. Bullinga JR, Alharethi R, Schram MS, Bristow MR, Gilbert EM. Changes in heart rate variability are correlated to hemodynamic improvement with chronic CARVEDILOL therapy in heart failure. J Card Fail. 2005;11(9):693–9.

    CAS  PubMed  CrossRef  Google Scholar 

  38. Copie X, Lamaison D, Salvador M, Sadoul N, DaCosta A, Faucher L, Legal F, Le Heuzey JY, VALID Investigators. Heart rate variability before ventricular arrhythmias in patients with coronary artery disease and an implantable cardioverter defibrillator. Ann Noninvasive Electrocardiol. 2003;8(3):179–84.

    PubMed  CrossRef  Google Scholar 

  39. Alter P, Grimm W, Vollrath A, Czerny F, Maisch B. Heart rate variability in patients with cardiac hypertrophy–relation to left ventricular mass and etiology. Am Heart J. 2006;151(4):829–36.

    PubMed  CrossRef  Google Scholar 

  40. Hayano J, Mukai S, Sakakibara M, Okada A, Takata K, Fujinami T. Effects of respiratory interval on vagal modulation of heart rate. Am J Physiol Heart Circ Physiol. 1994;267(36):H33–40.

    CAS  Google Scholar 

  41. Curtis BM, O’Keefe JH. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77:45–54.

    PubMed  CrossRef  Google Scholar 

  42. Barakat HA, Mooney N, O’Brien K, et al. Coronary heart disease risk factors in morbidly obese women with normal glucose tolerance. Diabetes Care. 1993;16(1):144–9.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Ziegler D, Zentai CP, Perz S, Rathmann W, Haastert B, Doring A, Meisinger C. Prediction of mortality using measures of cardiac autonomic dysfunction in the diabetic and nondiabetic population: the MONICA/KORA Augsburg Cohort Study. Diabetes Care. 2008;31:556–61.

    PubMed  CrossRef  Google Scholar 

  44. Bilchick KC, Fetics B, Djoukeng R, et al. Prognostic value of heart rate variability in chronic congestive heart failure (Veterans Affairs’ Survival Trial of Antiarrhythmic Therapy in Congestive Heart Failure). Am J Cardiol. 2002;90(1):24–8.

    PubMed  CrossRef  Google Scholar 

  45. Batchvarov V, Hnatkova K, Ghuran A, Poloniecki J, Camm AJ, Malik M. Ventricular gradient as a risk factor in survivors of acute myocardial infarction. Pacing Clin Electrophysiol. 2003;26(1 Pt 2):373–6.

    PubMed  CrossRef  Google Scholar 

  46. Ghuran A, Reid F, La Rovere MT, ATRAMI Investigators. Heart rate turbulence-based predictors of fatal and nonfatal cardiac arrest (the autonomic tone and reflexes after myocardial infarction substudy). Am J Cardiol. 2002;89(2):184–90.

    PubMed  CrossRef  Google Scholar 

  47. Barthel P, Bauer A, Müller A, et al. Reflex and tonic autonomic markers for risk stratification in patients with type 2 diabetes surviving acute myocardial infarction. Diabetes Care. 2011;34(8):1833–7.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  48. Liao D, Cai J, Rosamond WD, et al. Cardiac autonomic function and incident coronary heart disease: a population-based case-cohort study. Am J Epidemiol. 1997;145(8):696–706.

    CAS  PubMed  CrossRef  Google Scholar 

  49. Gerstein HC, Mann JFE, Yi Q, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286(4):421–6.

    CAS  PubMed  CrossRef  Google Scholar 

  50. Hermans MMH, Henry R, Dekker JM, et al. Estimated glomerular filtration rate and urinary albumin excretion are independently associated with greater arterial stiffness: the Hoorn Study. J Am Soc Nephrol. 2007;18(6):1942–52.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Hermans MMH, Henry RMA, Dekker JM, Nijpels G, Heine RJ, Stehouwer CDA. Albuminuria, but not estimated glomerular filtration rate, is associated with maladaptive arterial remodeling: the Hoorn Study. J Hypertens. 2008;26(4):791–7.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Fauci AS, Braunwald E, Kasper DL, et al. Harrison’s principles of internal medicine. 17th ed. New York: McGraw-Hill Professional; 2008.

    Google Scholar 

  53. Zheng ZJ, Croft JB, Giles WH, Mensah GA. Sudden cardiac death in the United States, 1989 to 1998. Circulation. 2001;104(18):2158–63.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. Circulation. 1998;97(21):2110–6.

    CAS  PubMed  CrossRef  Google Scholar 

  55. Centers for Disease Control and Prevention (CDC). Decline in deaths from heart disease and stroke–United States, 1900–1999. MMWR Morb Mortal Wkly Rep. 1999;48(30):649–56.

    Google Scholar 

  56. Myerburg RJ. Scientific gaps in the prediction and prevention of sudden cardiac death. J Cardiovasc Electrophysiol. 2002;13(7):709–23.

    PubMed  CrossRef  Google Scholar 

  57. Fox CS, Evans JC, Larson MG, Kannel WB, Levy D. Temporal trends in coronary heart disease mortality and sudden cardiac death from 1950 to 1999. Circulation. 2004;110(5):522–7.

    PubMed  CrossRef  Google Scholar 

  58. Jouven X, Empana J, Schwartz PJ, Desnos M, Courbon D, Ducimetière P. Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med. 2005;352(19):1951–8.

    CAS  PubMed  CrossRef  Google Scholar 

  59. Cole CR, Blackstone EH, Ashkow FJP, Snader CE, Lauer MS. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med. 1999;341:1351–7.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Vinik AI, Maser RE, Ziegler D. Neuropathy. The crystal ball for cardiovascular disease. Diabetes Care. 2010;33(7):1688–90.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  61. Vinik AI, Maser RE, Ziegler D. Autonomic imbalance: prophet of doom or scope for hope? Diabet Med. 2011;28:643–51.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  62. Vinik AI, Murray GL. Autonomic neuropathy is treatable. US Endocrinol. 2008;2:82–4.

    Google Scholar 

  63. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol. 1998;31(3):593–601.

    CAS  PubMed  CrossRef  Google Scholar 

  64. Litchman JH, Bigger Jr JT, Blumenthal JA, et al. Depression and coronary heart disease recommendations for screening, referral, and treatment: A science advisory from the American Heart Association Prevention Committee of the Council on Cardiovascular Nursing, Council on Clinical Cardiology, Council on Epidemiology and Prevention, and Interdisciplinary Council on Quality of Care and Outcomes Research: Endorsed by the American Psychiatric Association. Circulation. 2008;118:1768–75.

    CrossRef  Google Scholar 

  65. Arora RR, Ghosh Dastidar S, Colombo J Autonomic balance is associated with decreased morbidity. American Autonomic Society, 17th International Symposium, Kauai. 29 Oct–1 Nov 2008.

    Google Scholar 

  66. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–79.

    PubMed  CrossRef  Google Scholar 

  67. Joint Editorial Statement by the American Diabetes Association; the National Heart, Lung, and Blood Institute; the Juvenile Diabetes Foundation International; the National Institute of Diabetes and Digestive and Kidney Diseases; and the American Heart Association. Diabetes mellitus: a major risk factor for cardiovascular disease. Circulation. 1999;100:1132–3.

    CrossRef  Google Scholar 

  68. Grundy SM, Benjamin IJ, Burke GL, Chait A. AHA Scientific Statement: diabetes and cardiovascular disease, a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134–46.

    CAS  PubMed  CrossRef  Google Scholar 

  69. Low PA, Therapeutics and Technology Assessment Subcommittee. Assessment: clinical autonomic testing report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 1996;46:873–80.

    Google Scholar 

  70. Aring AM, Jones DE, Falko JM. Evaluation and prevention of diabetic neuropathy. Am Fam Physician. 2005;71:2123–30.

    PubMed  Google Scholar 

  71. Leenen FHH. Brain mechanisms contributing to sympathetic hyperactivity and heart failure. Circ Res. 2007;101:221–3.

    CAS  PubMed  CrossRef  Google Scholar 

  72. Sandroni P, Opfer-Gehrking TL, Singer W, Low PA. Pyridostigmine for treatment of neurogenic orthostatic hypotension: a follow up survey study. Clin Auton Res. 2005;15:51–3.

    PubMed  CrossRef  Google Scholar 

  73. Arumanayagam M, Chan S, Tong S, Sanderson JE. Antioxidant properties of carvedilol and metoprolol in heart failure: a double-blind randomized controlled trial. J Cardiovasc Pharmacol. 2001;37:48–54.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colombo, J., Arora, R., DePace, N.L., Vinik, A.I. (2015). Cardiovascular Autonomic Neuropathy: Risk Factor or Risk Indicator. In: Clinical Autonomic Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-319-07371-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07371-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07370-5

  • Online ISBN: 978-3-319-07371-2

  • eBook Packages: MedicineMedicine (R0)