Skip to main content

Drawbacks of Heart Rate Variability Analysis and Application of Parasympathetic and Sympathetic Monitoring

  • 1709 Accesses

Abstract

In this chapter, the failure of heart rate variability and beat-to-beat blood pressure is delineated and the solution to their failings (P&S monitoring) is introduced and developed. The chapter compares graphically spectral analysis of HRV with the spectral analysis method associated with P&S monitoring. The method of spectral analysis, the Fourier transform, is developed and demonstrated and applied to both HRV and P&S monitoring. This is to demonstrate how spectral analysis quantifies the respective measurement, enabling the primary care physician to assess their patient’s ANS. The shortcomings of the Fourier transform when applied to biological, especially autonomic, signals are then elucidated and their solution in the form of wavelet transforms is introduced and developed. In conclusion, the two transform techniques are then compared graphically.

Keywords

  • Heart Rate Variability
  • Fast Fourier Transform
  • Sympathetic Activity
  • Respiratory Sinus Arrhythmia
  • Continuous Wavelet Transform

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07371-2_3
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-07371-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.00
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6
Fig. 3.7
Fig. 3.8
Fig. 3.9
Fig. 3.10
Fig. 3.11
Fig. 3.12
Fig. 3.13
Fig. 3.14
Fig. 3.15
Fig. 3.16
Fig. 3.17
Fig. 3.18
Fig. 3.19
Fig. 3.20
Fig. 3.21
Fig. 3.22
Fig. 3.23
Fig. 3.24
Fig. 3.25
Fig. 3.26
Fig. 3.27
Fig. 3.28
Fig. 3.29
Fig. 3.30
Fig. 3.31

References

  1. Malik M, The Task Force of the European Society of Cardiology, North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–65.

    CrossRef  Google Scholar 

  2. Malik M, Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

    CrossRef  Google Scholar 

  3. Akselrod S, Gordon S, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to- beat cardiovascular control. Science. 1981;213:213–20.

    CrossRef  Google Scholar 

  4. Malik M, Camm AJ. Components of heart rate variability: what they really mean and what we really measure. Am J Cardiol. 1993;72:821–2.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Copie X, Lamaison D, Salvador M, Sadoul N, DaCosta A, Faucher L, Legal F, Le Heuzey JY, VALID Investigators. Heart rate variability before ventricular arrhythmias in patients with coronary artery disease and an implantable cardioverter defibrillator. Ann Noninvasive Electrocardiol. 2003;8(3):179–84.

    PubMed  CrossRef  Google Scholar 

  6. Vinik AI, Murray GL. Autonomic neuropathy is treatable. US Endocrinol. 2008;2:82–4.

    Google Scholar 

  7. Low PA, editor. Clinical autonomic disorders: evaluation and management. Philadelphia: Lippincott-Raven; 1997.

    Google Scholar 

  8. Arora RR, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic mechanisms and therapeutic implications of postural diabetic cardiovascular abnormalities. J Diabetes Sci Technol. 2008;2(4):568–71.

    CrossRef  Google Scholar 

  9. Vinik AI, Bloom HL, Colombo J. Differential effects of adrenergic antagonists (carvedilol vs. metoprolol) on parasympathetic and sympathetic activity: a comparison of measures. Heart International. In Print, 2014.

    Google Scholar 

  10. Bloom HL, Vinik AI, Colombo J. Differential effects of adrenergic antagonists (carvedilol vs. metoprolol) on parasympathetic and sympathetic activity: a comparison of clinical results. Heart International. In Print, 2014.

    Google Scholar 

  11. Vinik AI, Aysin B, Colombo J. Enhanced frequency domain analysis replaces older heart rate variability methods. Fourth annual diabetes technology meeting, Philadelphia, 28–30 Oct 2004.

    Google Scholar 

  12. Vinik AI, Aysin B, Colombo J. Resting enhanced frequency domain analysis improves heart rate variability sensitivity in early and late diabetics. Diabetes technology conference, San Francisco, 10–12 Nov 2005.

    Google Scholar 

  13. Aysin B, Aysin E. Effect of respiration in heart rate variability (HRV) analysis. Conf Proc IEEEE Med Biol Soc. 2006;1:1776–9. PubMed: 17946068.

    CrossRef  Google Scholar 

  14. Aysin B, Aysin E, Colombo J. Comparison of HRV analysis methods during orthostatic challenge: HRV with respiration or without? IEEE engineering in medicine and biology conference, Lyons, 2007.

    Google Scholar 

  15. Vinik AI, Aysin B, Colombo J. Enhanced frequency domain analysis identifies early autonomic dysfunction that may lead to elevated blood pressure in diabetics. Diabetes technology conference, San Francisco, 10–12 Nov 2005.

    Google Scholar 

  16. Arora RR, Aysin E, Aysin B, Colombo J. Therapeutic implications of sympathetic stimulus in orthostatic patients: measured by spectral domain analysis. AHA scientific sessions, Orlando, 4–7 Nov 2007.

    Google Scholar 

  17. Vinik AI, Aysin B, Colombo J. Differentiation of autonomic dysfunction by enhanced frequency domain analysis reveals additional stages in the progression of autonomic decline in diabetics. Diabetes technology conference, San Francisco, 10–12 Nov 2005.

    Google Scholar 

  18. Colombo J, Jacot J, Aysin E, Aysin B, Iffrig K, Vinik AI. Symptoms of orthostasis may be due to sympathetic/parasympathetic autonomic imbalance and can be evaluated by hrv with respiratory analysis with appropriate pathogenesis oriented therapeutic choices. International symposium on diabetes neuropathy, 7th annual congress, Cape Town, 29 Nov–2 Dec 2007.

    Google Scholar 

  19. Arora RR, Shoemaker WC, Iffrig K, Colombo J. Spectral analysis of respiratory activity provides a second autonomic measure associated with spectral analysis of heart rate variability. American Autonomic Society’s 17th international symposium on the autonomic nervous system, Rio Grande, Nov 2006.

    Google Scholar 

  20. Ali MA, Waheed A, Jurivich DA, Colombo J, Singer DH. Short-term time domain HRV measures: comparisons with 24-hr Holter monitoring. Geriatric medicine society meeting, Chicago, May 2006.

    Google Scholar 

  21. Arora RR, Colombo J. Orthostatic syndromes are associated by sympathetic withdrawal as demonstrated by non-invasive autonomic monitoring. American Autonomic Society, 17th international symposium, Kauai, 29 Oct–1 Nov 2008.

    Google Scholar 

  22. Vinik AI, Aysin B, Colombo J. Dynamic enhanced frequency domain analysis indicates a significant decline in autonomic function before age 50. Presented at the diabetes technology conference, San Francisco. 10–12 Nov 2005.

    Google Scholar 

  23. Barnsley M. Fractals everywhere. San Diego: Academic; 1988.

    Google Scholar 

  24. Ewing DJ. Cardiovascular reflexes and autonomic neuropathy. Clin Sci Mol Med. 1978;55(4):321–7.

    CAS  PubMed  Google Scholar 

  25. Ewing DJ, Clarke BF. Diagnosis and management of diabetic autonomic neuropathy. Br Med J. 1982;285:916–8.

    CAS  CrossRef  Google Scholar 

  26. Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985;8:491–8.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Vinik AI, Maser RE, Nakave AA. Diabetic cardiovascular autonomic nerve dysfunction. US Endocr Dis. 2007;2:2–9.

    Google Scholar 

  28. Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    PubMed  CrossRef  Google Scholar 

  29. Carney RM, Blumenthal JA, Freedland KE, Stein PK, Howells WB, Berkman LF, Watkins LL, Czajkowski SM, Hayano J, Domitrovich PP, Jaffe AS. Low heart rate variability and the effect of depression on post–myocardial infarction mortality. Arch Intern Med. 2005;165:1486–91.

    PubMed  CrossRef  Google Scholar 

  30. Litchman JH, Bigger Jr JT, Blumenthal JA, et al. Depression and coronary heart disease recommendations for screening, referral, and treatment: a science advisory from the American Heart Association Prevention Committee of the Council on Cardiovascular Nursing, Council on Clinical Cardiology, Council on Epidemiology and Prevention, and Interdisciplinary Council on Quality of Care and Outcomes Research: endorsed by the American Psychiatric Association. Circulation. 2008;118:1768–75.

    CrossRef  Google Scholar 

  31. Silver MA. Depression and heart failure: an overview of what we know and don’t know. Cleve Clin J Med. 2010;77 Suppl 3:S7–11.

    PubMed  CrossRef  Google Scholar 

  32. Barefoot JC, Helms MJ, Mark DB, Blumenthal JA, Califf RM, Haney TL, O’Connor CM, Siegler IC, Williams RB. Depression and long-term mortality risk in patients with coronary artery disease. Am J Cardiol. 1996;78:613–7.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Davidson KW, Rieckmann N, Lesperance F. Psychological theories of depression: potential application for the prevention of acute coronary syndrome recurrence. Psychosom Med. 2004;66:165–73.

    PubMed  CrossRef  Google Scholar 

  34. Lett HS, Blumenthal JA, Babyak MA, Sherwood A, Strauman T, Robins C, Newman MF. Depression as a risk factor for coronary artery disease: evidence, mechanisms, and treatment. Psychosom Med. 2004;66:305–15.

    PubMed  Google Scholar 

  35. Frasure-Smith N, Lesperance F, Gravel G, Masson A, Juneau M, Talajic M, Bourassa MG. Social support, depression, and mortality during the first year after myocardial infarction. Circulation. 2000;101:1919–24.

    CAS  PubMed  CrossRef  Google Scholar 

  36. Lespérance F, Frasure-Smith N, Juneau M, Théroux P. Depression and 1-year prognosis in unstable angina. Arch Intern Med. 2000;160(9):1354–60.

    PubMed  CrossRef  Google Scholar 

  37. Joynt KE, Whellan DJ, O’Connor CM. Depression and cardiovascular disease: mechanisms of interaction. Biol Psychiatry. 2003;54:248–61.

    PubMed  CrossRef  Google Scholar 

  38. Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.

    PubMed  CrossRef  Google Scholar 

  39. American Diabetes Association. Standards of medical care in diabetes – 2008. Diabetes Care. 2008;31 Suppl 1:S12–54.

    CrossRef  Google Scholar 

  40. American Diabetes Association. Standards of medical care in diabetes – 2013. Diabetes Care. 2013;36 Suppl 1:S11–66.

    PubMed Central  CrossRef  Google Scholar 

  41. Handelsman Y, AACE task force for developing a diabetes comprehensive care plan. American Association of Clinical Endocrinologists medical guidelines for clinical practice for developing a diabetes mellitus comprehensive care plan. Endocr Pract. 2011;17 Suppl 2:1–53.

    PubMed  CrossRef  Google Scholar 

  42. Low PA, Engstrom JW. Disorders of the autonomic nervous system. In: Harrison’s principles of internal medicine. 16th ed. New York: McGraw-Hill; 2003.

    Google Scholar 

  43. Curtis BM, O’Keefe JH. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77:45–54.

    PubMed  CrossRef  Google Scholar 

  44. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol. 1998;31(3):593–601.

    CAS  PubMed  CrossRef  Google Scholar 

  45. Low PA and the Therapeutics and Technology Assessment Subcommittee Assessment. Clinical autonomic testing report of the therapeutics and technology assessment subcommittee of the American Academy of Neurology. Neurology. 1996;46:873–80.

    Google Scholar 

  46. Nanavati SH, Bulgarelli RJ, Vazquez-Tanus J, Ghosh-Dastidar S, Colombo J, Arora RR. Altered autonomic activity with atrial fibrillation as demonstrated by non-invasive autonomic monitoring. US Cardiol. 2010;7(1):47–50.

    Google Scholar 

  47. Vinik AI, Freeman R, Erbas T. Diabetic autonomic neuropathy. Semin Neurol. 2003;23:365–72.

    PubMed  CrossRef  Google Scholar 

  48. DePace NL, Mears JP; Yayac M, Colombo J. Cardiac autonomic testing and diagnosing heart disease. A clinical perspective. In Print, 2014.

    Google Scholar 

  49. DePace NL, Mears JP; Yayac M, Colombo J. Cardiac autonomic testing and treating heart disease. A clinical perspective. In Print, 2014.

    Google Scholar 

  50. Bullinga JR, Alharethi R, Schram MS, Bristow MR, Gilbert EM. Changes in heart rate variability are correlated to hemodynamic improvement with chronic CARVEDILOL therapy in heart failure. J Card Fail. 2005;11(9):693–9.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Fatoni C, Raffa S, Regoli F, Giraldi F, La Rovere MT, Prentice J, Pastori F, Fratini S, Salerno-Uriarte JA, Klein HU, Auricchio A. Cardiac resynchronization therapy improves heart rate profile and heart rate variability of patients with moderate to severe heart failure. J Am Coll Cardiol. 2005;46(10):1875–82.

    CrossRef  Google Scholar 

  52. Fathizadeh P, Shoemaker WC, Woo CCJ, Colombo J. Autonomic activity in trauma patients based on variability of heart rate and respiratory rate. Crit Care Med. 2004;32(5):1300–5.

    PubMed  CrossRef  Google Scholar 

  53. Chen JY, Fung JW, Yu CM. The mechanisms of atrial fibrillation. J Cardiovasc Electrophysiol. 2006;17 Suppl 3:S2–7.

    PubMed  CrossRef  Google Scholar 

  54. Alter P, Grimm W, Vollrath A, Czerny F, Maisch B. Heart rate variability in patients with cardiac hypertrophy–relation to left ventricular mass and etiology. Am Heart J. 2006;151(4):829–36.

    PubMed  CrossRef  Google Scholar 

  55. Debono M, Cachia E. The impact of cardiovascular autonomic neuropathy in diabetes: is it associated with left ventricular dysfunction? Auton Neurosci. 2007;132(1–2):1–7.

    PubMed  CrossRef  Google Scholar 

  56. Just H. Peripheral adaptations in congestive heart failure: a review. Am J Med. 1991;90:23S–6.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Nakamura K, Matsumura K, Kobayashi S, Kaneko T. Sympathetic premotor neurons mediating thermoregulatory functions. Neurosci Res. 2005;51(1):1–8.

    PubMed  CrossRef  Google Scholar 

  58. Manfrini O, Morgagni G, Pizzi C, Fontana F, Bugiardini R. Changes in autonomic nervous system activity: spontaneous versus balloon-induced myocardial ischaemia. Eur Heart J. 2004;25(17):1502–8.

    PubMed  CrossRef  Google Scholar 

  59. Clarke B, Ewing D, Campbell I. Diabetic autonomic neuropathy. Diabetologia. 1979;17:195–212.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Oppenheim AV, Willsky AS, Young IT. Signals and systems. Englewood Cliffs: Prentice-Hall; 1983.

    Google Scholar 

  61. Peles E, Goldstein DS, Akselrod S, Nitzan H, Azaria M, Almog S, Dolphin D, Halkin H, Modan M. Interrelationships among measures of autonomic activity and cardiovascular risk factors during orthostasis and the oral glucose tolerance test. Clin Auton Res. 1995;5(5):271–8.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Kingwell BA, Thompson JM, Kaye DM, McPherson GA, Jennings GL, Esler MD. Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation. 1994;90:234–40.

    CAS  PubMed  CrossRef  Google Scholar 

  63. Tygesen H, Rundqvist B, Waagstein F, Wennerblom B. Heart rate variability measurement correlates with cardiac norepinephrine spillover in congestive heart failure. Am J Cardiol. 2001;87:1308–11.

    CAS  PubMed  CrossRef  Google Scholar 

  64. Akselrod S. Components of heart rate variability: basic studies. In: Malik M, editor. Heart rate variability. Armonk: Futura Publishing Co; 1995. p. 147–63.

    Google Scholar 

  65. Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. Hemodynamic regulation: investigation by spectra analysis. Am J Physiol. 1985;249:H867–75.

    CAS  PubMed  Google Scholar 

  66. Akselrod S, Eliash S, Oz O, Cohen S. Hemodynamic regulation in SHR: investigation by spectral analysis. Am J Physiol. 1987;253:H176–83.

    CAS  PubMed  Google Scholar 

  67. Olivera MM, Santos-Bento M, Xavier R, Rocha I, Ducla-Soares J-L, Ferreira R, Silva-Carvalho L. Wavelet analysis for the evaluation of cardiovascular autonomic nervous response to postural change in healthy subjects in relation to age. Second joint meeting of the European Federation of Autonomic Societies and the American Autonomic Society, Vienna, Austria. Clinical Autonom Res. 2007;17(5):301.

    Google Scholar 

  68. Olivera MM, Feliciano J, da-Silva N, Alves S, Xavier R, Rocha I, Silva-Carvalho L, Ferreira R. Wavelet Analysis for the evaluation of autonomic nervous system during orthostatic stress in paroxysmal atrial fibrillation. Second Joint Meeting of the European Federation of Autonomic Societies and the American Autonomic Society, Vienna, Austria. Clinical Autonom Res. 2007;17(5):301.

    Google Scholar 

  69. Olivera MM, Da-Silva N, Timoteo AT, Feliciano J, Silva S, Xavier R, Rocha I, Silva-Carvalho L, Ferreira R. Alterations in autonomic response during head-up tilt testing in paroxysmal atrial fibrillation patients: a wavelet analysis. Rev Port Cardiol. 2009;28(3):243–57.

    Google Scholar 

  70. Toledo E, Akselrod S, Pinhas I, Aravot D. Does synchronization reflect a true interaction in the cardiorespiratory system? Med Eng Phys. 2002;24(1):45–52.

    CAS  PubMed  CrossRef  Google Scholar 

  71. Pyetan E, Akselrod S. Do the high-frequency indexes of HRV provide a faithful assessment of cardiac vagal tone? A critical theoretical evaluation. IEEE Trans Biomed Eng. 2003;50(6):777–83.

    PubMed  CrossRef  Google Scholar 

  72. Merri M, Farden DC, Mottley JG, Titlebaum EL. Sampling frequency of electrocardiograms for spectral analysis of the heart rate variability. IEEE Trans Biomed Eng. 1990;37:99–106.

    CAS  PubMed  CrossRef  Google Scholar 

  73. Benedetto JJ, Frazier MW, editors. Wavelets: mathematics and applications. Boca Raton: CRC Press; 1994.

    Google Scholar 

  74. Keissar K, Davrath LR, Akselrod S. Coherence analysis between respiration and heart rate variability using continuous wavelet transform. Philos Trans A Math Phys Eng Sci. 2009;367(1892):1393–406.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colombo, J., Arora, R., DePace, N.L., Vinik, A.I. (2015). Drawbacks of Heart Rate Variability Analysis and Application of Parasympathetic and Sympathetic Monitoring. In: Clinical Autonomic Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-319-07371-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07371-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07370-5

  • Online ISBN: 978-3-319-07371-2

  • eBook Packages: MedicineMedicine (R0)