Skip to main content

History of Parasympathetic and Sympathetic Monitoring

  • 1669 Accesses

Abstract

Historically, heart rate variability (HRV) has been recognized as the primary method for noninvasive monitoring of the autonomic nervous system (ANS), including its parasympathetic and sympathetic branches. HRV, however, is a single independent measure of heartbeat intervals (HBI). Yet the ANS is a system with two independent components. As a measure of a system with two independent components, HRV fails a fundamental law of mathematics. Therefore, it is merely a gross measure of total ANS function. More recently, beat-to-beat blood pressure (btbBP) has been developed in an attempt to better specify sympathetic activity. Again, btbBP fails the fundamental law of math. It is still just based on HBIs and therefore a gross measure of the ANS. More information is needed. This information historically came in the form of symptoms. Yet, as was introduced in the previous chapter, symptoms often are late in the progression of autonomic dysfunction and also often require assumption. MIT and Harvard researchers understood that a second, independent measure was required to clear the ambiguity and the need for assumption. These researchers determined and validated that the second measure is respiratory activity. This chapter introduces the history of confusion caused by HRV and perpetuated by btbBP and resolves the issue with the second independent measure of respiratory activity.

Keywords

  • Heart Rate Variability
  • Autonomic Nervous System
  • Respiratory Sinus Arrhythmia
  • Parasympathetic Activity
  • Vagal Activity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07371-2_2
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-07371-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.00
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)

References

  1. Malliani A. The pattern of sympathovagal balance explored in the frequency domain. News Physiol Sci. 1999;14:111–7.

    PubMed  Google Scholar 

  2. Low PA, editor. Clinical autonomic disorders: evaluation and management. Philadelphia: Lippincott-Raven; 1997.

    Google Scholar 

  3. Low PA, Benarroch EE, editors. Clinical autonomic disorders. Philadelphia: Lippincott Williams and Williams; 2008.

    Google Scholar 

  4. Low PA, Engstrom JW. Disorders of the autonomic nervous system. In: Harrison’s principles of internal medicine. 16th ed. New York: McGraw-Hill; 2003.

    Google Scholar 

  5. Hales S. Statistical essays, vol. II. 1733rd ed. London: Haemastaticks: Innings and Manby; 1733.

    Google Scholar 

  6. Haller A. Elementa physiologicae corporis humini. Lausanne: Sumpithus MM Bousquet et Suliorum; 1760.

    Google Scholar 

  7. Levy MN, DeGeest H, Zieske H. Effects of respiratory center activity on the heart. Circ Res. 1966;18:67–78.

    CAS  PubMed  CrossRef  Google Scholar 

  8. Malik M, The Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–65.

    CrossRef  Google Scholar 

  9. Malik M, Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

    CrossRef  Google Scholar 

  10. Gray MA, Rylander K, Harrison NA, Wallin BG, Critchley HD. Following one’s heart: cardiac rhythms gate central initiation of sympathetic reflexes. J Neurosci. 2009;29(6):1817–25.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  11. Wenckebach KF. Die Unregelmassige Hertztatigkeit und Ihre Klinische Bedeutung. Berlin: Verlag vonWilhelm Engelmann; 1914.

    Google Scholar 

  12. Cerutti S, Bianchi AM, Mainardi LT. Spectral analysis of the heart rate variability signal, heart rate variability. Armonk: Futura Publishing Co.; 1995. p. 63–74.

    Google Scholar 

  13. Appel ML, Berger RD, Saul JP, Smith JM, Cohen RJ. Beat-to-beat variability in cardiovascular variables: noise or music? JACC. 1989;14(5):1139–48.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Akselrod S, Gordon S, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to- beat cardiovascular control. Science. 1981;213:213–20.

    CrossRef  Google Scholar 

  15. Hogue Jr CW, Dávila-Román VG, Stein PK, Feinberg M, Lappas DG, Pérez JE. Alterations in heart rate variability in patients undergoing dobutamine stress echocardiography, including patients with neurocardiogenic hypotension. Am Heart J. 1995;130(6):1203–9.

    PubMed  CrossRef  Google Scholar 

  16. Malliani A, Pagani M, Lombardi F, et al. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:482–92.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Kamath MV, Fallen EL. Power spectral analysis of HRV: a non-invasive signature of cardiac autonomic functions. Crit Rev Biomed Eng. 1993;21(3):245–311.

    CAS  PubMed  Google Scholar 

  18. Malpas SC. Neural influences on cardiovascular variability: possibilities and pitfalls. Am J Physiol Heart Circ Physiol. 2002;282:H6–20.

    CAS  PubMed  Google Scholar 

  19. Eckberg DL. Sympathovagal balance. A critical appraisal. Circulation. 1997;96(9):3224–32.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Bigger JT, Albrecht P, Steinmann RC, Rolnitzky LM, Fleiss JL, Cohen RJ. Comparison of time- and frequency domain-based measures of cardiac parasympathetic activity. Am J Cardiol. 1989;64:536–8.

    PubMed  CrossRef  Google Scholar 

  21. Bigger JT, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Correlations among time and frequency domain measures of heart period variability two weeks after acute myocardial infarction. Am J Cardiol. 1992;69:891–8.

    PubMed  CrossRef  Google Scholar 

  22. Bigger JT, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman JN. Frequency domain measures of heart period variability and mortality after acute myocardial infarction. Circulation. 1992;85:164–71.

    PubMed  CrossRef  Google Scholar 

  23. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. JACC. 1998;31(3):593–601.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Arora RR, Ghosh Dastidar S, Colombo J. Autonomic balance is associated with decreased morbidity. American Autonomic Society, 17th International Symposium, Kauai, 29 Oct–1 Nov 2008.

    Google Scholar 

  25. Waheed A, Ali MA, Jurivich DA, et al. Gender differences in longevity and autonomic function. Presented at the Geriatric Medicine Society Meeting, Chicago, 3–7 May 2006.

    Google Scholar 

  26. Alcalay M, Izraeli S, Wallach R, et al. Paradoxical pharmacodynamic effect of atropine on parasympathetic control: study by spectral analysis of heart rate fluctuations. Clin Pharmacol Ther. 1992;52:518–27.

    CAS  PubMed  CrossRef  Google Scholar 

  27. Eckberg DL. Physiological basis for human autonomic rhythms. Ann Med. 2000;32:341–9.

    CAS  PubMed  CrossRef  Google Scholar 

  28. Freeman R. Assessment of cardiovascular autonomic function. Clin Neurophysiol. 2006;117(4):716–30.

    PubMed  CrossRef  Google Scholar 

  29. Cammann H, Michel L. How to avoid misinterpretation of heart rate variability power spectra? Comput Methods Programs Biomed. 2002;1:15–23.

    CrossRef  Google Scholar 

  30. Badra LJ, Cooke WH, Hoag JB, Crossman AA, Kuusela TA, Tahvanainen KU, Eckberg DL. Respiratory modulation of human autonomic rhythms. Am J Physiol Heart Circ Physiol. 2001;280(6):H2674–88.

    CAS  PubMed  Google Scholar 

  31. Brown TE, Beightol LA, Koh J, Eckberg DL. Important influence of respiration on human R-R interval power spectra is largely ignored. J Appl Physiol. 1993;75(5):2310–7.

    CAS  PubMed  Google Scholar 

  32. Saul JP, Cohen RJ. Respiratory sinus arrhythmia, vagal control of the heart rate: experimental basis and clinical implications. In: Levy MN, Schwartz PJ, editors. Heart rate variability. Chapter 30. Armonk: Futura Publishing Co; 1995.

    Google Scholar 

  33. Hayano J, Mukai S, Sakakibara M, Okada A, Takata K, Fujinami T. Effects of respiratory interval on vagal modulation of heart rate. Am J Physiol Heart Circ Physiol. 1994;267(36):H33–40.

    CAS  Google Scholar 

  34. Novak V, Novak P, De Champlain J, Le Blanc AR, Martin R, Nadeau R. Influence of respiration on heart rate and blood pressure fluctuations. J Appl Physiol. 1993;74(2):617–26.

    CAS  PubMed  Google Scholar 

  35. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardiovascular regulation. Am J Physiol. 1991;261(4 pt 2):H1231–45.

    CAS  PubMed  Google Scholar 

  36. Pinna GD, Maestri R, La Rovere MT, Gobbi E, Fanfulla F. Effect of paced breathing on ventilatory and cardiovascular variability parameters during short-term investigations of autonomic function. Am J Physiol Heart Circ Physiol. 2006;290(1):H424–33.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: relations to cardia vagal tone, evolution and biobehavioral functions. Biol Psychol. 2007;74:263–85.

    PubMed  CrossRef  Google Scholar 

  38. Sanderson JE, Yeung LY, Yeung DT, Kay RL, Tomlinson B, Critchley JA, Woo KS, Bernardi L. Impact of changes in respiratory frequency and posture on power spectral analysis of heart rate and systolic blood pressure variability in normal subjects and patients with heart failure. Clin Sci (Lond). 1996;91(1):35–43.

    CAS  Google Scholar 

  39. Baselli G, Cerutti S, Badilini F, Biancardi L, Porta A, Pagani M, Lombardi F, Rimoldi O, Furlan R, Malliani A. Model for the assessment of heart period and arterial pressure variability interactions and of respiration influences. Med Biol Eng Comput. 1994;32(2):143–52.

    CAS  PubMed  CrossRef  Google Scholar 

  40. Patwardhan AR, Vallurupalli S, Evans JM, Bruce EN, Knapp CF. Override of spontaneous respiratory pattern generator reduces cardiovascular parasympathetic influence. J Appl Physiol. 1995;79(3):1048–54.

    CAS  PubMed  Google Scholar 

  41. Patwardhan AR, Evans JM, Bruce EN, Eckberg DL, Knapp CF. Voluntary control of breathing does not alter vagal modulation of heart rate. J Appl Physiol. 1995;78(6):2087–94.

    CAS  PubMed  Google Scholar 

  42. Parati G, Valentini M. Prognostic relevance of blood pressure variability. Hypertension. 2006;47(2):137–8.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Parati G, Mancia G. Blood pressure variability as a risk factor. Blood Press Monit. 2001;6(6):341–7.

    CAS  PubMed  CrossRef  Google Scholar 

  44. Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. A critical appraisal. Hypertension. 1995;25(6):1276–86.

    CAS  PubMed  CrossRef  Google Scholar 

  45. Parati G, Bilo G, Vettorello M, Groppelli A, Maronati A, Tortorici E, Caldara G, Mancia G. Assessment of overall blood pressure variability and its different components. Blood Press Monit. 2003;8(4):155–9.

    PubMed  CrossRef  Google Scholar 

  46. Bilo G, Giglio A, Styczkiewicz K, Caldara G, Kawecka-Jaszcz K, Mancia G, Parati G. How to improve the assessment of 24-h blood pressure variability. Blood Press Monit. 2005;10(6):321–3.

    PubMed  CrossRef  Google Scholar 

  47. Parati G, Rizzoni D. Assessing the prognostic relevance of blood pressure variability: discrepant information from different indices. J Hypertens. 2005;23(3):483–6.

    CAS  PubMed  CrossRef  Google Scholar 

  48. Parati G, Di Rienzo M. Determinants of heart rate and heart rate variability. J Hypertens. 2003;21(3):477–80.

    CAS  PubMed  CrossRef  Google Scholar 

  49. Parati G, Frattola A, Di Rienzo M, Mancia G. Blood pressure variability. Importance in research and in clinical hypertension. Arq Bras Cardiol. 1996;67(2):131–3.

    CAS  PubMed  Google Scholar 

  50. Keselbrener L, Akselrod S. Artifacts in standard and time-dependent spectral analysis of arterial blood pressure signals obtained by Finapres: importance and correction. Clin Auton Res. 1995;5(5):295–301.

    CAS  PubMed  CrossRef  Google Scholar 

  51. Katona PG, Jih F. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control. J Appl Physiol. 1975;39:801–5.

    CAS  PubMed  Google Scholar 

  52. Akselrod S. Components of heart rate variability: basic studies. In: Malik M, editor. Heart rate variability. Armonk: Futura Publishing Co; 1995. p. 147–63.

    Google Scholar 

  53. Gentlesk PJ, Wiley T, Taylor AJ. A prospective evaluation of the effect of Simvastatin on heart rate variability in non-ischemic cardiomyopathy. Am Heart J. 2005;150:478–83.

    CAS  PubMed  CrossRef  Google Scholar 

  54. Vinik AI, Aysin B, Colombo J. Enhanced frequency domain analysis replaces older heart rate variability methods. Philadelphia: Fourth Annual Diabetes Technology Meeting; 2004.

    Google Scholar 

  55. Vinik AI, Aysin B, Colombo J. Resting enhanced frequency domain analysis improves heart rate variability sensitivity in early and late diabetics. San Francisco: Diabetes Technology Conference; 2005.

    Google Scholar 

  56. Jenkins GM, Watts DG. Spectral analysis and it applications. Oakland: Holden-Day; 1968.

    Google Scholar 

  57. Uijtdehaage SH, Thayer JF. Accentuated antagonism in the control of human heart rate. Clin Auton Res. 2000;3:107–10.

    CrossRef  Google Scholar 

  58. Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. Hemodynamic regulation: investigation by spectra analysis. Am J Physiol. 1985;249:H867–75.

    CAS  PubMed  Google Scholar 

  59. Akselrod S, Eliash S, Oz O, Cohen S. Hemodynamic regulation in SHR: investigation by spectral analysis. Am J Physiol. 1987;253:H176–83.

    CAS  PubMed  Google Scholar 

  60. Akselrod S. Spectral analysis of fluctuations in cardiovascular parameters: a quantitative tool for the investigation of autonomic control. Trends Pharmacol Sci. 1988;9:6–9.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Pavri BB, Ingraldi A, Patel H, Zakaria S, Ho RT, Greenspon AJ. Validation of a novel, non-invasive system for autonomic profiling in healthy volunteers. Presented at the North American Society for Pacing and Electrophysiology, Scientific Sessions, San Diego, June 2002.

    Google Scholar 

  62. Carney RM, Blumenthal JA, Freedland KE, Stein PK, Howells WB, Berkman LF, Watkins LL, Czajkowski SM, Hayano J, Domitrovich PP, Jaffe AS. Low heart rate variability and the effect of depression on post–myocardial infarction mortality. Arch Intern Med. 2005;165:1486–91.

    PubMed  CrossRef  Google Scholar 

  63. Berger RD, Akselrod S, Gordon D, Cohen RJ. A efficient algorithm for spectral analysis of heart rate variability. IEEE Trans Biomed Eng. 1986;33:900–4.

    CAS  PubMed  CrossRef  Google Scholar 

  64. Jaffe R, Fung D. Constructing a heart rate variability analysis system. Johns Hopkins Medical Institutions Symposium II on HRV and Anesthesia, Oct 1993.

    Google Scholar 

  65. Stein PK, Bosner MS, Kleiger RE, Conger BM. Heart rate variability: a measure of cardiac autonomic tone. Am Heart J. 1994;127(5):1376–81.

    CAS  PubMed  CrossRef  Google Scholar 

  66. Mathias JM, Mullen TJ, Perott MH, Cohen RJ. Heart rate variability: principles and measurement. ACC Curr J Rev. 1993;2:10–2.

    Google Scholar 

  67. Williams CA, Lopes P. The influence of ventilator control on heart rate variability in children. J Sports Sci. 2002;5:407–15.

    CrossRef  Google Scholar 

  68. Challis RE, Kitney RI. Biomedical signal processing – part 1: time domain methods. Med Biol Eng Comput. 1990;28:509–24.

    CAS  PubMed  CrossRef  Google Scholar 

  69. Aysin B, Aysin E. Effect of respiration in heart rate variability (HRV) analysis. Conf Proc IEEE Eng Med Biol Soc. 2006;1:1776–9. PubMed: 17946068.

    PubMed  CrossRef  Google Scholar 

  70. Aysin B, Aysin E, Colombo J. Comparison of HRV analysis methods during orthostatic challenge: HRV with respiration or without? Lyons: IEEE Engineering in Medicine and Biology Conference; 2007.

    Google Scholar 

  71. Keissar K, Davrath LR, Akselrod S. Coherence analysis between respiration and heart rate variability using continuous wavelet transform. Philos Transact A Math Phys Eng Sci. 2009;367(1892):1393–406.

    CrossRef  Google Scholar 

  72. Challis RE, Kitney RI. Biomedical signal processing – part 2: the frequency transforms and their inter-relationships. Med Biol Eng Comput. 1991;29:1–17.

    CAS  PubMed  CrossRef  Google Scholar 

  73. Challis RE, Kitney RI. Biomedical signal processing – part 3: the power spectrum and coherence function. Med Biol Eng Comput. 1991;29:225–41.

    CAS  PubMed  CrossRef  Google Scholar 

  74. Oppenheim AV, Willsky AS, Young IT. Signals and systems. Englewood Cliffs: Prentice-Hall; 1983.

    Google Scholar 

  75. Arora RR, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic mechanisms and therapeutic implications of postural diabetic cardiovascular abnormalities. J Diabetes Sci Technol. 2008;2(4):568–71.

    CrossRef  Google Scholar 

  76. Olivera MM, Santos-Bento M, Xavier R, Rocha I, Ducla-Soares J-L, Ferreira R, Silva-Carvalho L. Wavelet analysis for the evaluation of cardiovascular autonomic nervous response to postural change in healthy subjects in relation to age. Second Joint Meeting of the European Federation of Autonomic Societies and the American Autonomic Society, Vienna, Austria. Clin Auton Res. 2007;17(5):301.

    Google Scholar 

  77. Olivera MM, Feliciano J, da-Silva N, Alves S, Xavier R, Rocha I, Silva-Carvalho L, Ferreira R. Wavelet Analysis for the evaluation of autonomic nervous system during orthostatic stress in paroxysmal atrial fibrillation. Second Joint Meeting of the European Federation of Autonomic Societies and the American Autonomic Society, Vienna, Austria. Clin Auton Res. 2007;17(5):301.

    Google Scholar 

  78. Olivera MM, da-Silva N, Timoteo AT, Feliciano J, Silva S, Xavier R, Rocha I, Silva-Carvalho L, Ferreira R. Alterations in autonomic response during head-up tilt testing in paroxysmal atrial fibrillation patients: a wavelet analysis. Rev Port Cardiol. 2009;28(3):243–57.

    Google Scholar 

  79. Ducla-Soares JL, Santos-Bento M, Laranjo S, Andrade A, Ducla-Soares E, Boto JP, Silva-Carvalho L, Rocha I. Wavelet analysis of autonomic outflow of normal subjects on head-up tilt, cold pressor test, Valsalva manoeuvre and deep breathing. Exp Physiol. 2009;92(4):677–86.

    CrossRef  Google Scholar 

  80. Xavier R, Laranjo S, Ducla-Soares E, Andrade A, Boto JP, Santos-Bento M, Ducla-Soares JL, Silva-Carvalho L, Rocha I. The Valsalva maneuver revisited by wavelets. Rev Port Cardiol. 2008;27(4):435–41.

    PubMed  Google Scholar 

  81. Low PA, Therapeutics and Technology Assessment Subcommittee Assessment. Clinical autonomic testing report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 1996;46:873–80.

    Google Scholar 

  82. Vinik AI, Maser RE, Nakave AA. Diabetic cardiovascular autonomic nerve dysfunction. US Endocrine Disease, 2007;2:2–9.

    Google Scholar 

  83. Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colombo, J., Arora, R., DePace, N.L., Vinik, A.I. (2015). History of Parasympathetic and Sympathetic Monitoring. In: Clinical Autonomic Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-319-07371-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07371-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07370-5

  • Online ISBN: 978-3-319-07371-2

  • eBook Packages: MedicineMedicine (R0)