Skip to main content

General Neurology

  • Chapter
  • First Online:
Clinical Autonomic Dysfunction

Abstract

In this chapter, we finish presenting the P&S data we have to date on the remainder of the fields within neurology, including Parkinson’s disease, multiple system atrophy, pure autonomic failure, multiple sclerosis, epilepsy, unexplained seizures, abnormal sweating, and Sörgren’s disease. P&S monitoring, in large part, had its start in cardiology and was significantly promoted in endocrinology (specifically diabetology). However, it is hoped that in bringing more information to light regarding a largely, heretofore, unmeasured portion of the nervous system, neurology will accelerate its growth. The purpose of P&S monitoring is to augment the field of autonomic nervous system monitoring, not to replace anything. P&S monitoring has its role. It is an easy to implement, apply, and utilize tool to assess, treat, and maintain patients who are known to be at risk for autonomic neuropathy before autonomic neuropathy is demonstrated. There is a point beyond which P&S monitoring is no longer effective, because at the level of the heart, there is not enough autonomic function remaining to be measured. It is at this point that traditional autonomic tests, including tilt table, become more effective. Several of the patient types that typically push the limits of P&S monitoring are presented in this section and include patients with advanced Parkinson’s, advanced multiple system atrophy, pure autonomic failure, and severe tremors and movement disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goldstein DS, Sewell L, Holmes C, Sharabi Y. Is Parkinson disease with orthostatic hypotension a distinctive entity? In: Presented at the 21st international symposium of the American Autonomic Society, Marco Island, 3–6 Nov 2010.

    Google Scholar 

  2. Goldstein DS. Cardiac sympathetic neuroimaging to distinguish multiple system atrophy from Parkinson disease. Clin Auton Res. 2001;11(6):341–2.

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein DS. Cardiac denervation in patients with Parkinson disease. Cleve Clin J Med. 2007;74 Suppl 1:S91–4.

    Article  PubMed  Google Scholar 

  4. Goldstein DS, Orimo S. Cardiac sympathetic neuroimaging: summary of the First International Symposium. Clin Auton Res. 2009;19(3):137–48. Epub 2009 Mar 6.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Imrich R, Eldadah BA, Bentho O, Pechnik S, Sharabi Y, Holmes C, Grossman E, Goldstein DS. Functional effects of cardiac sympathetic denervation in neurogenic orthostatic hypotension. Parkinsonism Relat Disord. 2009;15(2):122–7. Epub 2008 May 29.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Goldstein DS, Holmes C, Bentho O, Sato T, Moak J, Sharabi Y, Imrich R, Conant S, Eldadah BA. Biomarkers to detect central dopamine deficiency and distinguish Parkinson disease from multiple system atrophy. Parkinsonism Relat Disord. 2008;14(8):600–7. Epub 2008 Mar 5.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Moak JP, Goldstein DS, Eldadah BA, Saleem A, Holmes C, Pechnik S, Sharabi Y. Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Cleve Clin J Med. 2009;76 Suppl 2:S51–9.

    Article  PubMed  Google Scholar 

  8. Rahman F, Pechnik S, Gross DJ, Sewell L, Goldstein DS. Respiration-adjusted low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. In: Presented at the 21st international symposium of the American Autonomic Society, Marco Island, 3–6 Nov 2010.

    Google Scholar 

  9. Keselbrener L, Akselrod S, Ahiron A, Eldar M, Barak Y, Rotstein Z. Is fatigue in patients with multiple sclerosis related to autonomic dysfunction? Clin Auton Res. 2000;10(4):169–75.

    Article  CAS  PubMed  Google Scholar 

  10. Zaaimi B, Grebe R, Berquin P, Wallois F. Vagus nerve stimulation induces changes in respiratory sinus arrhythmia of epileptic children during sleep. Epilepsia. 2009;50(11):2473–80.

    Article  PubMed  Google Scholar 

  11. Schuele SU. Effects of seizures on cardiac function. J Clin Neurophysiol. 2009;26(5):302–8.

    Article  PubMed  Google Scholar 

  12. Mukherjee S, Tripathi M, Chandra PS, Yadav R, Choudhary N, Sagar R, Bhore R, Pandey RM, Deepak KK. Cardiovascular autonomic functions in well-controlled and intractable partial epilepsies. Epilepsy Res. 2009;85(2–3):261–9.

    Article  PubMed  Google Scholar 

  13. Jehi L. Sudden death in epilepsy, surgery, and seizure outcomes: the interface between heart and brain. Cleve Clin J Med. 2010;77 Suppl 3:S51–5.

    Article  PubMed  Google Scholar 

  14. Sevcencu C, Struijk JJ. Autonomic alterations and cardiac changes in epilepsy. Epilepsia. 2010;51(5):725–37.

    Article  PubMed  Google Scholar 

  15. Bealer SL, Little JG, Metcalf CS, Brewster AL, Anderson AE. Autonomic and cellular mechanisms mediating detrimental cardiac effects of status epilepticus. Epilepsy Res. 2010;91(1):66–73.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Jansen K, Lagae L. Cardiac changes in epilepsy. Seizure. 2010;19(8):455–60.

    Article  CAS  PubMed  Google Scholar 

  17. Chroni E, Sirrou V, Trachani E, Sakellaropoulos GC, Polychronopoulos P. Interictal alterations of cardiovagal function in chronic epilepsy. Epilepsy Res. 2009;83(2–3):117–23.

    Article  PubMed  Google Scholar 

  18. Harreby KR, Sevcencu C, Struijk JJ. Ictal and peri-ictal changes in cervical vagus nerve activity associated with cardiac effects. Med Biol Eng Comput. 2011;49(9):1025–33.

    Article  PubMed  Google Scholar 

  19. Jansen K, Vandeput S, Milosevic M, Ceulemans B, Van Huffel S, Brown L, Penders J, Lagae L. Autonomic effects of refractory epilepsy on heart rate variability in children: influence of intermittent vagus nerve stimulation. Dev Med Child Neurol. 2011;53(12):1143–9.

    Article  PubMed  Google Scholar 

  20. Tobias H, Vinitsky A, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic nervous system monitoring of patients with excess parasympathetic responses to sympathetic challenges – clinical observations. US Neurol. 2010;5(2):62–6.

    Google Scholar 

  21. Nikolov NP, Patel A, Alba MI, Leakan R, Bebris L, Ghosh-Dastidar S, Colombo J, Illei GG. Dysautonomia in primary Sjögren’s syndrome patients as assessed in the outpatient setting using real-time digital autonomic nervous system monitoring. In: Presented at the American College of Rheumatology 2008 annual scientific meeting, San Francisco, 25–29 Oct 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colombo, J., Arora, R., DePace, N.L., Vinik, A.I. (2015). General Neurology. In: Clinical Autonomic Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-319-07371-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07371-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07370-5

  • Online ISBN: 978-3-319-07371-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics