Skip to main content

Heart Diseases

  • 1656 Accesses

Abstract

This chapter considers heart diseases, beginning with the P&S association with sudden cardiac death. Included are coronary artery disease, congestive heart failure, and cardiovascular diseases with depression. The ValHeft and COMET studies are revisited with P&S monitoring, and ranolazine improvements in P&S responses and cardiac outcomes are presented. The basic premise is that the heart, a special muscle, is not unlike other muscles. It is controlled by nerves, the P&S nerves. Documenting P&S responses to disease helps to guide therapy for the individual patient. Documenting the individual’s P&S responses to therapy helps to determine patient compliance and guide titration and selection for the individual. As is demonstrated, P&S monitoring provides more information promoting improved outcomes.

Keywords

  • Leave Ventricular Ejection Fraction
  • Sympathetic Activity
  • Autonomic Dysfunction
  • Major Adverse Cardiac Event
  • Parasympathetic Activity

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07371-2_19
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-07371-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.00
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 19.1
Fig. 19.2
Fig. 19.3
Fig. 19.4
Fig. 19.5
Fig. 19.6
Fig. 19.7
Fig. 19.8
Fig. 19.9

References

  1. Abraham WT, Nademanee K, Volosin K, Krueger S, Neelagaru S, Raval N, Obel O, Weiner S, Wish M, Carson P, Ellenbogen K, Bourge R, Parides M, Chiacchierini RP, Goldsmith R, Goldstein S, Mika Y, Burkhoff D, Kadish A, FIX-HF-5 Investigators and Coordinators. Subgroup analysis of a randomized controlled trial evaluating the safety and efficacy of cardiac contractility modulation in advanced heart failure. J Card Fail. 2011;17(9):710–7.

    PubMed  CrossRef  Google Scholar 

  2. Schwartz PJ, La Rovere MT, Vanoli E. Autonomic nervous system and sudden cardiac death. Experimental basis and clinical observations for post-myocardial infarction risk stratification. Circulation. 1992;85(1 Suppl):I77–91.

    CAS  PubMed  Google Scholar 

  3. Watanabe J, Thamilarasan M, Blackstone EH, Thomas JD, Lauer MS. Heart rate recovery immediately after treadmill exercise and left ventricular systolic dysfunction as predictors of mortality: the case of stress echocardiography. Circulation. 2001;104(16):1911–6.

    CAS  PubMed  Google Scholar 

  4. Jouven X, Empana JP, Schwartz PJ, Desnos M, Courbon D, Ducimetiere P. Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med. 2005;352(19):1951–8.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Priori S, Zipes DP. Sudden cardiac death. Elsevier Pub; 2006.

    Google Scholar 

  6. Zipes DP, Rubart M. Neural modulation of cardiac arrhythmias and sudden cardiac death. Heart Rhythm. 2006;3(1):108–13.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  7. Dhar R, Alsheikh-Ali AA, Estes III NAM, Moss AJ, Zareba W, Daubert JP, Greenberg H, Case RB, Kent DM. Association of prolonged QRS duration with ventricular tachyarrhythmias and sudden cardiac death in the Multicenter Automatic Defibrillator Implantation Trial II (MADIT-II). Heart Rhythm. 2008;5(6):807–13.

    PubMed Central  PubMed  CrossRef  Google Scholar 

  8. Zipes DP. Heart-brain interactions in cardiac arrhythmias: role of the autonomic nervous system. Cleve Clin J Med. 2008;75(Supp2):S94–6.

    PubMed  CrossRef  Google Scholar 

  9. Tomaselli GF, Zipes DP. What causes sudden death in heart failure? Circ Res. 2004;95:754–63.

    CAS  PubMed  CrossRef  Google Scholar 

  10. Zipes DP. Autonomic modulation of cardiac arrhythmias. In: Zipes DP, Jalife J, editors. Cardiac electrophysiology: from cell to bedside. 2nd ed. Philadelphia: WB Saunders Co; 1994. p. 365–95.

    Google Scholar 

  11. Schwartz PJ. Sympathetic imbalance and cardiac arrhythmias. In: Randall WC, editor. Nervous control of cardiovascular function. New York: Oxford University Press; 1984. p. 225–52.

    Google Scholar 

  12. Rubart M, Zipes DP. Mechanisms of sudden cardiac death. J Clin Invest. 2005;115:2305–15.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  13. DePace NL, Mears JP, Yayac M, Colombo J. Cardiac autonomic testing and diagnosing heart disease. “A clinical perspective.” Submitted Heart International. 2013.

    Google Scholar 

  14. DePace NL, Mears JP, Yayac M, Colombo J. Cardiac autonomic testing and treating heart disease. “A clinical perspective.” Submitted Heart International. 2013.

    Google Scholar 

  15. Mukai S, Lipsitz LA. Orthostatic hypotension. Clin Geriatr Med. 2002;18(2):253–68.

    PubMed  CrossRef  Google Scholar 

  16. Patterson D. Modulation and rescue of vagal neuroeffector transmission. Am Auton Soc. ISAN/AAS. 2011, Brazil.

    Google Scholar 

  17. Xavier R, Laranjo S, Ducla-Soares E, Andrade A, Boto JP, Santos-Bento M, Ducla-Soares JL, Silva-Carvalho L, Rocha I. The Valsalva maneuver revisited by Wavelets. Rev Port Cardiol. 2008;27(4):435–41.

    PubMed  Google Scholar 

  18. Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    PubMed  CrossRef  Google Scholar 

  19. Ducla-Soares JL, Santos-Bento M, Laranjo S, Andrade A, Ducla-Soares E, Boto JP, Silva-Carvalho L, Rocha I. Wavelet analysis of autonomic outflow of normal subjects on head-up tilt, cold pressor test, Valsalva manoeuvre and deep breathing. Exp Physiol. 2009;92(4):677–86.

    CrossRef  Google Scholar 

  20. U.S. Department of Health and Human Services (HHS). Prevention makes common “cents”. Washington, DC: U.S. Department of Health and Human Services; 2003. p. 35.

    Google Scholar 

  21. American Diabetes Association. Standards of medical care in diabetes – 2011. Diabetes Care. 2011;34 Suppl 1:S11–61.

    PubMed Central  CrossRef  Google Scholar 

  22. Joint Editorial Statement by the American Diabetes Association; the National Heart, Lung, and Blood Institute; the Juvenile Diabetes Foundation International; the National Institute of Diabetes and Digestive and Kidney Diseases; American Heart Association. Diabetes mellitus: a major risk factor for cardiovascular disease. Circulation. 1999;100:1132–3.

    CrossRef  Google Scholar 

  23. Grundy SM, Benjamin IJ, Burke GL, Chait A. AHA scientific statement: diabetes and cardiovascular disease, a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134–46.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Aring AM, Jones DE, Falko JM. Evaluation and prevention of diabetic neuropathy. Am Fam Physician. 2005;71:2123–30.

    PubMed  Google Scholar 

  25. Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.

    PubMed  CrossRef  Google Scholar 

  26. Bigger JT, Albrecht P, Steinmann RC, Rolnitzky LM, Fleiss JL, Cohen RJ. Comparison of time- and frequency domain-based measures of cardiac parasympathetic activity. Am J Cardiol. 1989;64:536–8.

    PubMed  CrossRef  Google Scholar 

  27. Olivera MM, da-Silva N, Timoteo AT, Feliciano J, Silva S, Xavier R, Rocha I, Silva-Carvalho L, Ferreira R. Alterations in autonomic response during head-up tilt testing in paroxysmal atrial fibrillation patients: a wavelet analysis. Rev Port Cardiol. 2009;28(3):243–57.

    Google Scholar 

  28. Vinik AI, Murray GL. Autonomic neuropathy is treatable. US Endocrinol. 2008;2:82–4.

    Google Scholar 

  29. Azevedo ER, Kubo T, Mak S, Al-Hesayen A, Schofield A, Allan R, Kelly S, Newton GE, Floras JS, Parker JD. Nonselective versus selective beta-adrenergic receptor blockade in congestive heart failure: differential effects on sympathetic activity. Circulation. 2001;104:2194–9.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Armour JA. Intrinsic cardiac neurons involved in cardiac regulation possess alpha 1-, alpha 2-, beta 1- and beta 2-adrenoceptors. Can J Cardiol. 1997;13:277–84.

    CAS  PubMed  Google Scholar 

  31. Chobanian AV (chair). Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. NIH Publication No. 03-5233, 2003.

    Google Scholar 

  32. Schrezenmaier C, Singer W, Muenter Swift N, Sletten D, Tanabe J, Low PA. Adrenergic and vagal baroreflex sensitivity in autonomic failure. Arch Neurol. 2007;64:381–6.

    PubMed  CrossRef  Google Scholar 

  33. Pickering T. Processing of physiological signals by cardiac ganglion cells. Am Auton Soc. ISAN/AAS 2011, Brazil.

    Google Scholar 

  34. Sunagawa K. What the vagal nerve stimulation can do for the diseased heart? Am Auton Soc. ISAN/AAS 2011, Brazil.

    Google Scholar 

  35. Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K. Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation. 2004;109(1):120–4.

    PubMed  CrossRef  Google Scholar 

  36. Zhang Y, Popovic ZB, Bibevski S, Fakhry I, Sica DA, Van Wagoner DR, Mazgalev TN. Chronic vagus nerve stimulation improves autonomic control and attenuates systemic inflammation and heart failure progression in a canine high-rate pacing model. Circ Heart Fail. 2009;2(6):692–9.

    CAS  PubMed  CrossRef  Google Scholar 

  37. Schwartz PJ, De Ferrari GM, Sanzo A, Landolina M, Rordorf R, Raineri C, Campana C, Revera M, Ajmone-Marsan N, Tavazzi L, Odero A. Long term vagal stimulation in patients with advanced heart failure: first experience in man. Eur J Heart Fail. 2008;10(9):884–91.

    PubMed  CrossRef  Google Scholar 

  38. Schwartz PJ, De Ferrari GM. Vagal stimulation for heart failure: background and first in-man study. Heart Rhythm. 2009;6(11 Suppl):S76–81.

    PubMed  CrossRef  Google Scholar 

  39. De Ferrari GM, Crijns HJ, Borggrefe M, Milasinovic G, Smid J, Zabel M, Gavazzi A, Sanzo A, Dennert R, Kuschyk J, Raspopovic S, Klein H, Swedberg K, Schwartz PJ, CardioFit Multicenter Trial Investigators. Chronic vagus nerve stimulation: a new and promising therapeutic approach for chronic heart failure. Eur Heart J. 2011;32(7):847–55.

    PubMed  CrossRef  Google Scholar 

  40. Swedberg K, Komajda M, Böhm M, Borer JS, Ford I, Dubost-Brama A, Lerebours G, Tavazzi L, SHIFT Investigators. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010;376(9744):875–85.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Lachmann J, Banerjee A, Davoudi M, Aragon D, Talerja A, Sonnenblick EH, Shirani J, Le Jemtel T. Withdrawal of angiotensin receptor blocker from triple neurohormonal therapy partially restores sympathetic activity in chronic heart failure. Anaheim: American Heart Association, Scientific Sessions; 2001. p. 11–4.

    Google Scholar 

  42. Arora RR, Ghosh Dastidar S, Colombo J. Altered sympathetic and parasympathetic activity is associated in patients with chronic coronary artery disease. Clin Auton Res. 2008;18(5):277.

    Google Scholar 

  43. Nanavati SH, Bulgarelli RJ, Vazquez-Tanus J, Ghosh-Dastidar S, Colombo J, Arora RR. Altered autonomic activity with atrial fibrillation as demonstrated by non-invasive autonomic monitoring. US Cardiol. 2010;7(1):47–50.

    Google Scholar 

  44. Vinik AI, Maser RE, Nakave AA. Diabetic cardiovascular autonomic nerve dysfunction. US Endocr Dis. 2007;2:2–9.

    Google Scholar 

  45. Bullinga JR, Alharethi R, Schram MS, Bristow MR, Gilbert EM. Changes in heart rate variability are correlated to hemodynamic improvement with chronic CARVEDILOL therapy in heart failure. J Card Fail. 2005;11(9):693–9.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Fatoni C, Raffa S, Regoli F, Giraldi F, La Rovere MT, Prentice J, Pastori F, Fratini S, Salerno-Uriarte JA, Klein HU, Auricchio A. Cardiac resynchronization therapy improves heart rate profile and heart rate variability of patients with moderate to severe heart failure. J Am Coll Cardiol. 2005;46(10):1875–82.

    CrossRef  Google Scholar 

  47. Fathizadeh P, Shoemaker WC, Woo CCJ, Colombo J. Autonomic activity in trauma patients based on variability of heart rate and respiratory rate. Crit Care Med. 2004;32(5):1300–5.

    PubMed  CrossRef  Google Scholar 

  48. Chen JY, Fung JW, Yu CM. The mechanisms of atrial fibrillation. J Cardiovasc Electrophysiol. 2006;17 Suppl 3:S2–7.

    PubMed  CrossRef  Google Scholar 

  49. Copie X, Lamaison D, Salvador M, Sadoul N, DaCosta A, Faucher L, Legal F, Le Heuzey JY, VALID Investigators. Heart rate variability before ventricular arrhythmias in patients with coronary artery disease and an implantable cardioverter defibrillator. Ann Noninvasive Electrocardiol. 2003;8(3):179–84.

    PubMed  CrossRef  Google Scholar 

  50. Alter P, Grimm W, Vollrath A, Czerny F, Maisch B. Heart rate variability in patients with cardiac hypertrophy–relation to left ventricular mass and etiology. Am Heart J. 2006;151(4):829–36.

    PubMed  CrossRef  Google Scholar 

  51. Debono M, Cachia E. The impact of cardiovascular autonomic neuropathy in diabetes: is it associated with left ventricular dysfunction? Auton Neurosci. 2007;132(1–2):1–7.

    PubMed  CrossRef  Google Scholar 

  52. Just H. Peripheral adaptations in congestive heart failure: a review. Am J Med. 1991;90:23S–6.

    CAS  PubMed  CrossRef  Google Scholar 

  53. Nakamura K, Matsumura K, Kobayashi S, Kaneko T. Sympathetic premotor neurons mediating thermoregulatory functions. Neurosci Res. 2005;51(1):1–8.

    PubMed  CrossRef  Google Scholar 

  54. Manfrini O, Morgagni G, Pizzi C, Fontana F, Bugiardini R. Changes in autonomic nervous system activity: spontaneous versus balloon-induced myocardial ischaemia. Eur Heart J. 2004;25(17):1502–8.

    PubMed  CrossRef  Google Scholar 

  55. Clarke B, Ewing D, Campbell I. Diabetic autonomic neuropathy. Diabetologia. 1979;17:195–212.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Waheed A, Ali MA, Jurivich DA, et al. Gender differences in longevity and autonomic function. Presented at the Geriatric Medicine Society meeting, Chicago. 3–7 May 2006.

    Google Scholar 

  57. Foody JM, Farrell MH, Krumholz HM. β-blocker therapy in heart failure: scientific review. JAMA. 2002;287:883–9.

    CAS  PubMed  CrossRef  Google Scholar 

  58. Goldsmith RL, Bloomfield DM, Rosenwinkel ET. Exercise and autonomic function. Coron Artery Dis. 2000;11:129–35.

    CAS  PubMed  CrossRef  Google Scholar 

  59. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol. 1998;31(3):593–601.

    CAS  PubMed  CrossRef  Google Scholar 

  60. Arora RR, Ghosh Dastidar S, Colombo J Autonomic balance is associated with decreased morbidity. American Autonomic Society, 17th international symposium, Kauai. 29 Oct – 1 Nov 2008.

    Google Scholar 

  61. Tsuji H, Venditti Jr FJ, Manders ES, Evans JC, Larson MG, Feldman CL, Levy D. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994;90(2):878–83.

    CAS  PubMed  CrossRef  Google Scholar 

  62. Tobias H, Vinitsky A, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic nervous system monitoring of patients with excess parasympathetic responses to sympathetic challenges – clinical observations. US Neurol. 2010;5(2):62–6.

    Google Scholar 

  63. Carney RM, Blumenthal JA, Freedland KE, Stein PK, Howells WB, Berkman LF, Watkins LL, Czajkowski SM, Hayano J, Domitrovich PP, Jaffe AS. Low heart rate variability and the effect of depression on post–myocardial infarction mortality. Arch Intern Med. 2005;165:1486–91.

    PubMed  CrossRef  Google Scholar 

  64. Malik M. The Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–65.

    CrossRef  Google Scholar 

  65. Malik M, The Task Force of the European Society of Cardiology, The North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

    CrossRef  Google Scholar 

  66. Cohn JN, Tognoni G, Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker Valsartan in chronic heart failure. N Engl J Med. 2001;345:1667–75.

    CAS  PubMed  CrossRef  Google Scholar 

  67. Murray GL. Changes in autonomic balance in aggressively treated heart failure patients associated with ranolazine therapy. Circulation. Submitted 2012.

    Google Scholar 

  68. Shryrock J, Belardinelli L. Inhibition of late sodium current to reduce electrical and mechanical dysfunction in ischemic myocardium. Br J Pharmacol. 2007. doi:10.1038/Sj:hjp.0707522. Advanced online publication.

    Google Scholar 

  69. Burshnikov A, DiDiego J, Zygmunt A. Atrium selective sodium channel blockade as a strategy for suppression of atrial fibrillation. Circulation. 2007;116:1449–57.

    CrossRef  Google Scholar 

  70. Maier S, Westnbrock R, Schenkman K, Feigl E, Scheuer T, Catteral W. An unexpected role for brain-type sodium channels in coupling of cell surface depolarization to contraction in the heart. PNAS. 2002;99(6):4073–8.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  71. Hunt S, Abraham W, Chin M, Feldman A, Francis G, Ganiats T, et al. ACC/AHA guidelines update for the diagnosis and management of chronic heart failure in the adult – summary article. Circulation. 2007;115:1825–52.

    Google Scholar 

  72. Tomaselli G, Zipes D. What causes sudden death in heart failure? Circulation. 2004;95:754–83.

    CAS  CrossRef  Google Scholar 

  73. Watanabe J, Shinozaki T, Nobuyuki S, Fukahori K, Koseki Y, Karibe A, et al. Accumulation of risk markers predicts the incidence of sudden death in patients with chronic heart failure. Eur J Heart Fail. 2006;8(3):237–42.

    PubMed  CrossRef  Google Scholar 

  74. Stein P, Tereshchenk O, Domitrorich P, Kleiger K, Perez A, Deedwania P. Diastolic dysfunction and autonomic abnormalities in patients with systolic heart failure. Eur J Heart Fail. 2007;9(4):364–9.

    CAS  PubMed  CrossRef  Google Scholar 

  75. Poirier P, Bogaty P, Phillippon F, Garneau C, Fortin C, Dumesnil J. Preclinical diabetic cardiomyopathy: relation of left ventricular diastolic dysfunction to cardiac autonomic neuropathy in uncomplicated well controlled type 2 diabetes. Metabolism. 2003;52(8):1056–61.

    CAS  PubMed  CrossRef  Google Scholar 

  76. Livania E, Flevari P, Theodorakis G, Kolokathis F, Leftherotis D, Kremastinos D. Effect of biventricular pacing on heart rate variability in patients with chronic congestive heart failure. Eur J Heart Fail. 2003;5(2):175–8.

    CrossRef  Google Scholar 

  77. Stephens M, Raffel D, Allman K, Schwaiger M, Weiland D. Regression and progression of cardiac sympathetic dysinnervation complicating diabetes: an assessment by C-11 hydroxyephedrine and positron emission tomography. Metabolism. 1999;48(1):92–101.

    CrossRef  Google Scholar 

  78. Ziegler D, Gries F. Alpha-lipoic Acid and the treatment of diabetic peripheral autonomic cardiac neuropathy. Diabetes. 1997;46 Suppl 2:S62–6.

    CAS  PubMed  CrossRef  Google Scholar 

  79. Prendergast JJ. Diabetic autonomic neuropathy: part 1. Early detection. Pract Diabetol. 2001;7–14.

    Google Scholar 

  80. Prendergast JJ. Diabetic autonomic neuropathy: part 2. Treatment. Pract Diabetol. 2001;30–6.

    Google Scholar 

  81. Ziegler D, Ametov A, Barinov A, Dyck PJ, Gurieva I, Low PA, Munzel U, Yakhno N, Raz I, Novosadova M, Maus J, Samigullin R. Oral treatment with Alpha-lipoic Acid improves symptomatic diabetic polyneuropathy: the SYDNEY 2 trial. Diabetes Care. 2006;29(11):2365–70.

    CAS  PubMed  CrossRef  Google Scholar 

  82. Ametov AS, Barinov A, Dyck PJ, Hermann R, Kozlova N, Litchy WJ, Low PA, Nehrdich D, Novosadova M, O’Brien PC, Reljanovic M, Samigullin R, Schuette K, Strokov I, Tritschler HJ, Wessel K, Yakhno N, Ziegler D, SYDNEY Trial Study Group. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid. The SYDNEY trial. Diabetes Care. 2003;26(3):770–6.

    CAS  PubMed  CrossRef  Google Scholar 

  83. Chaitman B. Ranolazine for the treatment of chronic angina and potential use in other cardiovascular conditions. Circulation. 2006;113:2462–72.

    PubMed  CrossRef  Google Scholar 

  84. Chaitman B, Pepine C, Parker J, Skopal M, Chumakova G, Kuch J, Wang W, Skettino SL, Wolff AA, Combination Assessment of Ranolazine In Stable Angina (CARISA) Investigators. Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina. JAMA. 2004;291(3):309–16.

    CAS  PubMed  CrossRef  Google Scholar 

  85. Chaitman B, Skettino S, Parker J, Hanley P, Meluzin J, Kuch J, Pepine CJ, Wang W, Nelson JJ, Hebert DA, Wolff AA, MARISA Investigators. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J Am Coll Cardiol. 2004;43:1375–82.

    CAS  PubMed  CrossRef  Google Scholar 

  86. Murray GL, Colombo J. Ranolazine improves autonomic balance in heart failure when added to guideline driven therapy. Submitted 2013.

    Google Scholar 

  87. Murray GL, Colombo J. Ranolazine therapy reduces non-ST-segment-elevation myocardial infarction and unstable angina in coronary disease patients with angina. Submitted 2013

    Google Scholar 

  88. Murray GL, Colombo J. The impact of Ranolazine on left ventricular ejection fraction and autonomic measures in patients with chronic heart failure. Submitted 2013.

    Google Scholar 

  89. Vinik AI, Bloom HL, Colombo J. Differential effects of adrenergic antagonists (carvedilol vs. metoprolol) on parasympathetic and sympathetic activity: a comparison of measures. Heart Int. Submitted 2013.

    Google Scholar 

  90. Bloom HL, Vinik AI, Colombo J. Differential effects of adrenergic antagonists (carvedilol vs. metoprolol) on parasympathetic and sympathetic activity: A comparison of clinical results. Heart Int. Submitted 2013.

    Google Scholar 

  91. Low PA, The Therapeutics and Technology Assessment Subcommittee Assessment. Clinical autonomic testing report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 1996;46:873–80.

    Google Scholar 

  92. Vinik AI, Aysin B, Colombo J. Differentiation of autonomic dysfunction by enhanced frequency domain analysis reveals additional stages in the progression of autonomic decline in diabetics. Diabetes Technology conference, San Francisco, 10–12 Nov 2005.

    Google Scholar 

  93. Low PA, editor. Clinical autonomic disorders: evaluation and management. Philadelphia: Lippincott-Raven; 1997.

    Google Scholar 

  94. Ali MA, Waheed A, Jurivich DA, Colombo J, Singer DH. Short-term time domain HRV measures: comparisons with 24-hr Holter monitoring. Geriatric Medicine Society meeting, Chicago. May 2006.

    Google Scholar 

  95. Ebbehoj E, Poulsen P, Hansen K, Knudsen S, Molgaard H, Mogensen C. Effects on heart rate variability of Metoprolol supplementary to ongoing ACE-inhibitor treatment in Type I diabetic patients with abnormal albuminuria. Diabetologia. 2002;45(7):965–75.

    CAS  PubMed  CrossRef  Google Scholar 

  96. Lampert R, Ickovics JR, Viscoli CJ, Horwitz RI, Lee FA. Effects of propranolol on recovery of heart rate variability following acute myocardial infarction and relation to outcome in the Β-blocker Heart Attack Trial. Am J Cardiol. 2003;91:137–42.

    CAS  PubMed  CrossRef  Google Scholar 

  97. Arumanayagam M, Chan S, Tong S, Sanderson JE. Antioxidant properties of carvedilol and metoprolol in heart failure: a double-blind randomized controlled trial. J Cardiovasc Pharmacol. 2001;37:48–54.

    CAS  PubMed  CrossRef  Google Scholar 

  98. Remme WJ, Cleland JG, Erhardt L, Spark P, Torp-Pedersen C, Metra M, Komajda M, Moullet C, Lukas MA, Poole-Wilson P, Di LA, Swedberg K. Effect of carvedilol and metoprolol on the mode of death in patients with heart failure. Eur J Heart Fail. 2007;9:1128–35.

    CAS  PubMed  CrossRef  Google Scholar 

  99. Kveiborg B, Major-Petersen A, Christiansen B, Torp-Pedersen C. Carvedilol in the treatment of chronic heart failure: lessons from the Carvedilol Or Metoprolol European Trial. Vasc Health Risk Manag. 2007;3:31–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Akselrod S, Gordon S, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to- beat cardiovascular control. Science. 1981;213:213–20.

    CrossRef  Google Scholar 

  101. Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. Hemodynamic regulation: investigation by spectra analysis. Am J Physiol. 1985;249:H867–75.

    CAS  PubMed  Google Scholar 

  102. Curtis BM, O’Keefe JH. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77:45–54.

    PubMed  CrossRef  Google Scholar 

  103. Robertson D, Bisggioni I, Burnstock G, Low PA, Paton JFR, editors. Primer on the autonomic nervous system. 3rd ed. Waltham: Academic; 2012.

    Google Scholar 

  104. Low PA, Engstrom JW. Disorders of the autonomic nervous system. In: Harrison’s principles of internal medicine. 16th ed. New York: McGraw-Hill; 2003.

    Google Scholar 

  105. Saper CB. Autonomic disorders and their management. In: Cecil textbook of medicine. 22nd ed. Philadelphia: WB Saunders; 2003.

    Google Scholar 

  106. Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Heller GV, Iskandrian AE, Wittlin SD, Filipchuk N, Ratner RE, Inzucchi SE. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301:1547–55.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  107. Litchman JH, Bigger Jr JT, Blumenthal JA, et al. Depression and coronary heart disease recommendations for screening, referral, and treatment: a science advisory from the American Heart Association Prevention Committee of the Council on Cardio-vascular Nursing, Council on Clinical Cardiology, Council on Epidemiology and Prevention, and Interdisciplinary Council on Quality of Care and Outcomes Research: endorsed by the American Psychiatric Association. Circulation. 2008;118:1768–75.

    Google Scholar 

  108. Silver MA. Depression and heart failure: an overview of what we know and don’t know. Cleve Clin J Med. 2010;77(Suppl3):S7–11.

    PubMed  CrossRef  Google Scholar 

  109. Barefoot JC, Helms MJ, Mark DB, Blumenthal JA, Califf RM, Haney TL, O’Connor CM, Siegler IC, Williams RB. Depression and long-term mortality risk in patients with coronary artery disease. Am J Cardiol. 1996;78:613–7.

    CAS  PubMed  CrossRef  Google Scholar 

  110. Davidson KW, Rieckmann N, Lesperance F. Psychological theories of depression: potential application for the prevention of acute coronary syndrome recurrence. Psychosom Med. 2004;66:165–73.

    PubMed  CrossRef  Google Scholar 

  111. Lett HS, Blumenthal JA, Babyak MA, Sherwood A, Strauman T, Robins C, Newman MF. Depression as a risk factor for coronary artery disease: evidence, mechanisms, and treatment. Psychosom Med. 2004;66:305–15.

    PubMed  Google Scholar 

  112. Frasure-Smith N, Lesperance F, Gravel G, Masson A, Juneau M, Talajic M, Bourassa MG. Social support, depression, and mortality during the first year after myocardial infarction. Circulation. 2000;101:1919–24.

    CAS  PubMed  CrossRef  Google Scholar 

  113. Lespérance F, Frasure-Smith N, Juneau M, Théroux P. Depression and 1-year prognosis in unstable angina. Arch Intern Med. 2000;160(9):1354–60.

    PubMed  CrossRef  Google Scholar 

  114. Joynt KE, Whellan DJ, O’Connor CM. Depression and cardiovascular disease: mechanisms of interaction. Biol Psychiatry. 2003;54:248–61.

    PubMed  CrossRef  Google Scholar 

  115. Miller BD, Wood BL. Parasympathetic “bias” as a form of autonomic dysregulation associated with depressive/hopeless states. Presented at American Autonomic Society meeting, Marco Island, 3–6 Nov 2010.

    Google Scholar 

  116. Hunsaker RP, Stone JR. Renal-cell carcinoma extending into the vena cava and right side of the heart. N Engl J Med. 2001;345:1667–75.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colombo, J., Arora, R., DePace, N.L., Vinik, A.I. (2015). Heart Diseases. In: Clinical Autonomic Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-319-07371-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07371-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07370-5

  • Online ISBN: 978-3-319-07371-2

  • eBook Packages: MedicineMedicine (R0)