Skip to main content

General Autonomic Disorders

  • Chapter
  • First Online:
Clinical Autonomic Dysfunction

Abstract

This chapter discusses “general” autonomic disorders. These are autonomic disorders that may be present regardless of the primary disease or disorder or age or stage. Included is the association between autonomic dysfunction and inflammation. Recent evidence indicates that the two are linked and that treating one helps to relieve the other. The etiology of inflammation may provide additional insight into the processes contributing to the progression of autonomic dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guinet P, Schneider SM, Macias BR, Watenpaugh DE, Hughson RL, Le Traon AP, Bansard JY, Hargens AR. WISE-2005 effect of aerobic and resistive exercises on orthostatic tolerance during 60 days bed rest in women. Eur J Appl Physiol. 2009;106:217–27.

    PubMed Central  PubMed  Google Scholar 

  2. Shibata S, Perhonen M, Levine BD. Supine cycling plus volume loading prevent cardiovascular deconditioning. J Appl Physiol. 2010;108:1177–86.

    PubMed Central  PubMed  Google Scholar 

  3. Hastings JL, Krainski F, Snell PG, Pacini EL, Jain M, Bhella PS, Shibata S, Fu Q, Palmer MD, Levine BD. Effect of rowing ergometry and oral volume loading on cardiovascular structure and function during bed rest. J Appl Physiol. 2012;112:1735–43.

    PubMed Central  PubMed  Google Scholar 

  4. Jeong SM, Shibata S, Levine BD, Zhang R. Exercise plus volume loading prevents orthostatic intolerance but not reduction in cerebral blood flow velocity after bed rest. Am J Physiol Heart Circ Physiol. 2012;302:H489–97.

    CAS  PubMed  Google Scholar 

  5. Tobias H, Vinitsky A, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic nervous system monitoring of patients with excess parasympathetic responses to sympathetic challenges – clinical observations. US Neurol. 2010;5(2):62–6.

    Google Scholar 

  6. Vinik AI, Maser RE, Nakave AA. Diabetic cardiovascular autonomic nerve dysfunction. US Endocr Dis 2007;2:2–9.

    Google Scholar 

  7. Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    PubMed  Google Scholar 

  8. Joint Editorial Statement by the American Diabetes Association; the National Heart, Lung, and Blood Institute; the Juvenile Diabetes Foundation International; the National Institute of Diabetes and Digestive and Kidney Diseases; and the American Heart Association. Diabetes mellitus: a major risk factor for cardiovascular disease. Circulation. 1999;100:1132–3.

    Google Scholar 

  9. Grundy SM, Benjamin IJ, Burke GL, Chait A. AHA scientific statement: diabetes and cardiovascular disease, a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134–46.

    CAS  PubMed  Google Scholar 

  10. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–79.

    PubMed  Google Scholar 

  11. Osman F, Gammage MD, Sheppard MC, Franklyn JA. Clinical review 142: cardiac dysrhythmias and thyroid dysfunction: the hidden menace? J Clin Endocrinol Metab. 2002;87(3):963–7.

    CAS  PubMed  Google Scholar 

  12. Chang MH, Chou KJ. The role of autonomic neuropathy in the genesis of intradialytic hypotension. Am J Nephrol. 2001;21(5):357–61.

    CAS  PubMed  Google Scholar 

  13. Low PA, Therapeutics and Technology Assessment Subcommittee Assessment. Clinical autonomic testing report of the therapeutics and technology assessment Subcommittee of the American Academy of Neurology. Neurology. 1996;46:873–80.

    Google Scholar 

  14. Agelink MW, Boz C, Ullrich H, Andrich J. Relationship between major depression and heart rate variability. Clinical consequences and implications for antidepressive treatment. Psychiatry Res. 2002;113(1–2):139–49.

    PubMed  Google Scholar 

  15. Bernad P, Colombo J. Clinical implications of excess parasympathetic responses to sympathetic challenges. Fifth annual ECNS meeting, Houston, 17–21 Sept 2003.

    Google Scholar 

  16. Bernad P, Colombo J. Effects of industrial solvents on human autonomic nervous system. Fifth annual ECNS meeting, Houston, 17–21 September, 2003.

    Google Scholar 

  17. Low PA, editor. Clinical autonomic disorders: evaluation and management. Philadelphia: Lippincott-Raven; 1997.

    Google Scholar 

  18. Newton GE, Parker JD. Acute effects of beta 1-selective and nonselective beta-adrenergic receptor blockade on cardiac sympathetic activity in congestive heart failure. Circulation. 1996;94:353–8.

    CAS  PubMed  Google Scholar 

  19. Azevedo ER, Kubo T, Mak S, Al-Hesayen A, Schofield A, Allan R, Kelly S, Newton GE, Floras JS, Parker JD. Nonselective versus selective beta-adrenergic receptor blockade in congestive heart failure: differential effects on sympathetic activity. Circulation. 2001;104:2194–9.

    CAS  PubMed  Google Scholar 

  20. Watson-Wright W, Boudreau G, Cardinal R, Armour JA. Beta 1- and beta 2-adrenoceptor subtypes in canine intrathoracic efferent sympathetic nervous system regulating the heart. Am J Physiol. 1991;261:R1269–75.

    CAS  PubMed  Google Scholar 

  21. Armour JA. Intrinsic cardiac neurons involved in cardiac regulation possess alpha 1-, alpha 2-, beta 1- and beta 2-adrenoceptors. Can J Cardiol. 1997;13:277–84.

    CAS  PubMed  Google Scholar 

  22. Huang MH, Smith FM, Armour JA. Modulation of in situ canine intrinsic cardiac neuronal activity by nicotinic, muscarinic, and beta-adrenergic agonists. Am J Physiol. 1993;265:R659–69.

    CAS  PubMed  Google Scholar 

  23. Arora RR, Bulgarelli RJ, Ghosh-Dastidar S, Colombo J. Autonomic mechanisms and therapeutic implications of postural diabetic cardiovascular abnormalities. J Diabetes Sci Technol. 2008;2(4):568–71.

    Google Scholar 

  24. Chobanian AV (chair). Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. NIH Publication No. 03-5233, 2003.

    Google Scholar 

  25. Persson PB, DiRienzo M, Castiglioni P, Cerutti C, Pagani M, Honzikova N, Akselrod S, Parati G. Time versus frequency domain techniques for assessing baroreflex sensitivity. J Hypertens. 2001;19(10):1699–705.

    CAS  PubMed  Google Scholar 

  26. Pagani M, Somers V, Furlan R, Dell’Orto S, Conway J, Baselli G, Cerutti S, Sleight P, Malliani A. Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension. 1988;12:600–10.

    CAS  PubMed  Google Scholar 

  27. Malik M. The task force of the European society of cardiology and the North American society of pacing and electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Circulation. 1996;93:1043–65.

    Google Scholar 

  28. Malik M, Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability, standards of measurement, physiological interpretation, and clinical use. Eur Heart J. 1996;17:354–81.

    Google Scholar 

  29. Parati G, Bilo G, Vettorello M, Groppelli A, Maronati A, Tortorici E, Caldara G, Mancia G. Assessment of overall blood pressure variability and its different components. Blood Press Monit. 2003;8(4):155–9.

    PubMed  Google Scholar 

  30. Novak V, Novak P, De Champlain J, Le Blanc AR, Martin R, Nadeau R. Influence of respiration on heart rate and blood pressure fluctuations. J Appl Physiol. 1993;74(2):617–26.

    CAS  PubMed  Google Scholar 

  31. Sanderson JE, Yeung LY, Yeung DT, Kay RL, Tomlinson B, Critchley JA, Woo KS, Bernardi L. Impact of changes in respiratory frequency and posture on power spectral analysis of heart rate and systolic blood pressure variability in normal subjects and patients with heart failure. Clin Sci (Lond). 1996;91(1):35–43.

    CAS  Google Scholar 

  32. Parati G, Valentini M. Prognostic relevance of blood pressure variability. Hypertension. 2006;47(2):137–8.

    CAS  PubMed  Google Scholar 

  33. Schrezenmaier C, Singer W, Muenter Swift N, Sletten D, Tanabe J, Low PA. Adrenergic and vagal baroreflex sensitivity in autonomic failure. Arch Neurol. 2007;64:381–6.

    PubMed  Google Scholar 

  34. Moak JP, Goldstein DS, Eldadah BA, Saleem A, Holmes C, Pechnik S, Sharabi Y. Supine low-frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Cleve Clin J Med. 2009;76 Suppl 2:S51–9.

    PubMed  Google Scholar 

  35. Moak JP, Goldstein DS, Eldadah BA, Saleem A, Holmes C, Pechnik S, Sharabi Y. Supine low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Heart Rhythm. 2007;4(12):1523–9.

    PubMed Central  PubMed  Google Scholar 

  36. Rahman F, Pechnik S, Gross D, Sewell L, Goldstein DS. LF power reflects baroreflex function, not cardiac sympathetic innervation. Clin Auton Res. 2011;21(3):133–41.

    PubMed Central  PubMed  Google Scholar 

  37. Rahman F, Pechnik S, Gross DS, Sewell L, Goldstein DS. Respiration-adjusted low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Presented at the 21st international symposium of the American Autonomic Society, Marco Island, 3–6 Nov 2010.

    Google Scholar 

  38. Goldstein DS, Bentho O, Park MY, Sharabi Y. Low-frequency power of heart rate variability is not a measure of cardiac sympathetic tone but may be a measure of modulation of cardiac autonomic outflows by baroreflexes. Exp Physiol. 2011;96(12):1255–61.

    PubMed Central  PubMed  Google Scholar 

  39. Akselrod S, Gordon S, Ubel FA, Shannon DC, Berger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuations: a quantitative probe of beat-to- beat cardiovascular control. Science. 1981;213:213–20.

    Google Scholar 

  40. Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. Hemodynamic regulation: investigation by spectra analysis. Am J Physiol. 1985;249:H867–75.

    CAS  PubMed  Google Scholar 

  41. Akselrod S, Eliash S, Oz O, Cohen S. Hemodynamic regulation in SHR: investigation by spectral analysis. Am J Physiol. 1987;253:H176–83.

    CAS  PubMed  Google Scholar 

  42. Akselrod S. Spectral analysis of fluctuations in cardiovascular parameters: a quantitative tool for the investigation of autonomic control. Trends Pharmacol Sci. 1988;9:6–9.

    CAS  PubMed  Google Scholar 

  43. Aysin B, Aysin E. Effect of respiration in heart rate variability (HRV) analysis. Conf Proc IEEEE Med Biol Soc. 2006;1:1776–9. PubMed: 17946068.

    Google Scholar 

  44. Aysin B, Aysin E, Colombo J Comparison of HRV analysis methods during orthostatic challenge: HRV with respiration or without? IEEE Engineering in Medicine and Biology conference, Lyons, 2007.

    Google Scholar 

  45. Bloomfield DM, Kaufman ES, Bigger Jr JT, Fleiss J, Rolnitzky L, Steinman R. Passive head-up tilt and actively standing up produce similar overall changes in autonomic balance. Am Heart J. 1997;134(2 Pt 1):316–20.

    CAS  PubMed  Google Scholar 

  46. Ewing DJ. Cardiovascular reflexes and autonomic neuropathy. Clin Sci Mol Med. 1978;55(4):321–7.

    CAS  PubMed  Google Scholar 

  47. Ewing DJ, Clarke BF. Diagnosis and management of diabetic autonomic neuropathy. Br Med J. 1982;285:916–8.

    CAS  Google Scholar 

  48. Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985;8:491–8.

    CAS  PubMed  Google Scholar 

  49. CPT code 95922 – Testing of autonomic nervous system function; vasomotor adrenergic innervation (sympathetic adrenergic function), including beat-to-beat blood pressure and R-R interval changes during Valsalva maneuver and at least 5 minutes of passive tilt.

    Google Scholar 

  50. Ziegler D, Gries F. Alpha-lipoic acid and the treatment of diabetic peripheral autonomic cardiac neuropathy. Diabetes. 1997;46 Suppl 2:S62–6.

    CAS  PubMed  Google Scholar 

  51. Prendergast JJ. Diabetic autonomic neuropathy: Part 1. Early detection. Practl Diabetol. 2001;20(1):7–14.

    Google Scholar 

  52. Prendergast JJ. Diabetic autonomic neuropathy: Part 2. Treatment. Practl Diabetol. 2001;20(2):30–6.

    Google Scholar 

  53. Freeman R. Treatment of orthostatic hypotension. Semin Neurol. 2003;23:435–42.

    PubMed  Google Scholar 

  54. Colombo J, Jacot J, Aysin E, Aysin B, Iffrig K, Vinik AI. Symptoms of orthostasis may be due to sympathetic/parasympathetic autonomic imbalance and can be evaluated by hrv with respiratory analysis with appropriate pathogenesis oriented therapeutic choices. International symposium on Diabetes Neuropathy, 7th annual congress, Cape Town, 29 Nov – 2 Dec 2007.

    Google Scholar 

  55. Maser RE, Lenhard MJ. Review: cardiovascular autonomic neuropathy due to diabetes mellitus: clinical manifestations, consequences, and treatment. J Clin Endocrinol Metab. 2005;90:5896–903.

    CAS  PubMed  Google Scholar 

  56. Mukai S, Lipsitz LA. Orthostatic hypotension. Clin Geriatr Med. 2002;18(2):253–68.

    PubMed  Google Scholar 

  57. Lagi A, Spini S. Clinostatic hypertension and orthostatic hypotension. Clin Cardiol. 2010;33(6):E10–5.

    PubMed  Google Scholar 

  58. Fan XH, Wang Y, Sun K, Zhang W, Wang H, Wu H, Zhang H, Zhou X, Hui R. Disorders of orthostatic blood pressure response are associated with cardiovascular disease and target organ damage in hypertensive patients. Am J Hypertens. 2010;23(8):829–37. Epub 2010 Apr 22.

    PubMed  Google Scholar 

  59. Potocka-Plazak K, Plazak W. Orthostatic hypotension in elderly women with congestive heart failure. Aging (Milano). 2001;13(5):378–84.

    CAS  Google Scholar 

  60. Chhabra SK, De S. Cardiovascular autonomic neuropathy in chronic obstructive pulmonary disease. Respir Med. 2005;99(1):126–33.

    CAS  PubMed  Google Scholar 

  61. Goldstein DS, Holmes CS, Dendi R, Bruce SR, Li ST. Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology. 2002;58(8):1247–55.

    CAS  PubMed  Google Scholar 

  62. Tipre DN, Goldstein DS. Cardiac and extracardiac sympathetic denervation in Parkinson’s disease with orthostatic hypotension and in pure autonomic failure. J Nucl Med. 2005;46(11):1775–81.

    CAS  PubMed  Google Scholar 

  63. Wüllner U, Schmitz-Hübsch T, Antony G, Fimmers R, Spottke A, Oertel WH, Deuschl G, Klockgether T, Eggert K, KNP eV. Autonomic dysfunction in 3414 Parkinson’s disease patients enrolled in the German Network on Parkinson’s disease (KNP e.V.): the effect of ageing. Eur J Neurol. 2007;14(12):1405–8. Epub 2007 Oct 17.

    PubMed  Google Scholar 

  64. Merkelbach S, Haensch CA, Hemmer B, Koehler J, König NH, Ziemssen T. Multiple sclerosis and the autonomic nervous system. J Neurol. 2006;253 Suppl 1:I21–5.

    PubMed  Google Scholar 

  65. Kanjwal K, Karabin B, Kanjwal Y, Grubb BP. Autonomic dysfunction presenting as postural orthostatic tachycardia syndrome in patients with multiple sclerosis. Int J Med Sci. 2010;7:62–7.

    PubMed Central  PubMed  Google Scholar 

  66. Goldstein DS. Cardiac ectopy in chronic autonomic failure. Clin Auton Res. 2010;20(2):85–92. Epub 2009 Dec 11.

    PubMed  Google Scholar 

  67. Guilleminault C, Faul JL, Stoohs R. Sleep-disordered breathing and hypotension. Am J Respir Crit Care Med. 2001;164(7):1242–7.

    CAS  PubMed  Google Scholar 

  68. Solano C, Martinez A, Becerril L, Vargas A, Figueroa J, Navarro C, Ramos-Remus C, Martinez-Lavin M. Autonomic dysfunction in fibromyalgia assessed by the Composite Autonomic Symptoms Scale (COMPASS). J Clin Rheumatol. 2009;15(4):172–6.

    PubMed  Google Scholar 

  69. Mack KJ, Johnson JN, Rowe PC. Orthostatic intolerance and the headache patient. Semin Pediatr Neurol. 2010;17(2):109–16.

    PubMed  Google Scholar 

  70. Chelimsky G, Madan S, Alshekhlee A, Heller E, McNeeley K, Chelimsky T. A comparison of dysautonomias comorbid with cyclic vomiting syndrome and with migraine. Gastroenterol Res Pract. 2009;2009:701019. Epub 2010 Jan 6.

    PubMed Central  PubMed  Google Scholar 

  71. Benvenuto LJ, Krakoff LR. Morbidity and mortality of orthostatic hypotension: implications for management of cardiovascular disease. Am J Hypertens. 2010;24(2):135–44.

    Google Scholar 

  72. Fedorowski A, Engström G, Hedblad B, Melander O. Orthostatic hypotension predicts incidence of heart failure: the Malmö preventive project. Am J Hypertens. 2010;23(11):1209–15.

    Google Scholar 

  73. Gupta V, Lipsitz LA. Orthostatic hypotension in the elderly: diagnosis and treatment. Am J Med. 2007;120(10):841–7.

    PubMed  Google Scholar 

  74. Sandroni P, Opfer-Gehrking TL, Singer W, Low PA. Pyridostigmine for treatment of neurogenic orthostatic hypotension: a follow up survey study. Clin Auton Res. 2005;15:51–3.

    PubMed  Google Scholar 

  75. Figueroa JJ, Basford JR, Low PA. Preventing and treating orthostatic hypotension: as easy as A, B. C Cleve Clin J Med. 2010;77(5):298–306.

    Google Scholar 

  76. Vinik AI, Aysin B, Colombo J. Enhanced frequency domain analysis replaces older heart rate variability methods. Fourth annual Diabetes Technology meeting, Philadelphia, 28–30 Oct 2004.

    Google Scholar 

  77. Stoupakis G, Colombo J, Rendas-Baum R, Budhwani N, Arora R. Postural drop of low frequency component of heart rate variability in diagnosis of orthostasis. Presented at scientific sessions of the American Heart Association, Chicago, 2002.

    Google Scholar 

  78. Adiraju RK, Gessman LJ, Colombo J. Preliminary applications of the ANS-R1000. MESPE J. 2001;3(1):33–45.

    Google Scholar 

  79. Low PA, Engstrom JW. Disorders of the autonomic nervous system. In: Harrison’s principles of internal medicine. 16th ed. New York: McGraw-Hill; 2003.

    Google Scholar 

  80. Aysin B, Aysin E, Colombo J, Vinik A. Diabetes may accelerate the onset of orthostasis. 6th annual Diabetes Technology meeting, Atlanta, 2–6 Nov 2006.

    Google Scholar 

  81. Arora RR, Aysin E, Aysin B, Colombo J. Therapeutic implications of sympathetic stimulus in orthostatic patients: measured by spectral domain analysis. AHA Scientific Sessions, Orlando, 4–7 Nov 2007.

    Google Scholar 

  82. Borst C, Weiling W, van Brederode JFM, Hond A, de Rijk LG, Dunning AJ. Mechanisms of initial heart rate response to postural change. Am J Physiol. 1982;243:H676–81.

    CAS  PubMed  Google Scholar 

  83. Smit AA, Halliwill JR, Low PA, Wieling W. Pathophysiological basis of orthostatic hypotension in autonomic failure. J Physiol. 1999;519(Pt 1):1–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Aring AM, Jones DE, Falko JM. Evaluation and prevention of diabetic neuropathy. Am Fam Phys. 2005;71:2123–30.

    Google Scholar 

  85. Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.

    PubMed  Google Scholar 

  86. Bradley JG, Davis KA. Orthostatic hypotension. Am Fam Physician. 2003;68(12):2393–9.

    PubMed  Google Scholar 

  87. Streeten DH, Auchincloss Jr JH, Anderson Jr GH, Richardson RL, Thomas FD, Miller JW. Orthostatic hypertension, pathogenic studies. Hypertension. 1985;7(2):196–203.

    CAS  PubMed  Google Scholar 

  88. Yoshinary M, Wakisaka M, Nakamura U, Yoshioka M, Uchizono Y, Iwase M. Orthostatic hypertension in patients with type 2 diabetes. Diabetes Care. 2001;24(10):1783–6.

    Google Scholar 

  89. Low PA. Testing the autonomic nervous system. Semin Neurol. 2003;23:407–21.

    PubMed  Google Scholar 

  90. Malik M, editor. Clinical guide to cardiac autonomic tests. Dordrecht: Kluwer Academic Publishers; 1998.

    Google Scholar 

  91. Maule S, Catalfamo E, Del Colle S. Cardiovascular autonomic function in 422 patients with orthostatic symptoms. Am J Hypertens. 2003;16:505.

    Google Scholar 

  92. Malik M, Camm AJ. Heart rate variability. Armonk: Futura Press; 1995.

    Google Scholar 

  93. Vinik AI, Aysin B, Colombo J. Enhanced frequency domain analysis identifies early autonomic dysfunction that may lead to elevated blood pressure in diabetics. Diabetes Technology conference, San Francisco, 10–12 Nov 2005.

    Google Scholar 

  94. Gibbons CH, Freeman R. Treatment options for autonomic neuropathies. Curr Treat Options Neurol. 2006;8(2):119–32.

    PubMed  Google Scholar 

  95. Young TM, Mathias CJ. The effects of water ingestion on orthostatic hypotension in two groups of chronic autonomic failure: multiple system atrophy and pure autonomic failure. J Neurol Neurosurg Psychiatry. 2004;75:1737–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Thayer JF, Sternberg E. Beyond heart rate variability: vagal regulation of allostatic systems. Ann N Y Acad Sci. 2006;1088:361–72.

    CAS  PubMed  Google Scholar 

  97. Thayer JF, Fischer JE. Heart rate variability, overnight urinary norepinephrine and C-reactive protein: evidence for the cholinergic anti-inflammatory pathway in healthy human adults. J Intern Med. 2009;265:439–47.

    CAS  PubMed  Google Scholar 

  98. Vinik AI, Erbas T, Casellini CM. Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabetes Invest. 2013;4(1):4–18.

    CAS  Google Scholar 

  99. DePace NL, Mears JP, Yayac M, Colombo J. Cardiac autonomic testing and diagnosing heart disease. A clinical perspective. Heart International. Accepted. 2014.

    Google Scholar 

  100. DePace NL, Mears JP, Yayac M, Colombo J. Cardiac autonomic testing and treating heart disease. A clinical perspective. Heart International. Accepted. 2014.

    Google Scholar 

  101. Tracey KJ. Reflex control of immunity. Nat Rev Immunol. 2009;9:418–28.

    CAS  PubMed  Google Scholar 

  102. Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–62.

    CAS  PubMed  Google Scholar 

  103. Tracey KJ. Immune cells exploit a neural circuit to enter the CNS. Cell. 2012;148:392–4.

    CAS  PubMed  Google Scholar 

  104. Watkins LR, Goehler LE, Relton JK, et al. Blockade of interleukin-1 induced hyperthermia by subdiaphragmatic vagotomy: evidence for vagal mediation of immune-brain communication. Neurosci Lett. 1995;183:27–31.

    CAS  PubMed  Google Scholar 

  105. Hansen MK, O’Connor KA, Goehler LE, et al. The contribution of the Vagus nerve in interleukin-1 beta-induced fever is dependent on dose. Am J Physiol Regul Integr Comp Physiol. 2001;280:R929–34.

    CAS  PubMed  Google Scholar 

  106. Goehler LE, Relton JK, Dripps D, et al. Vagal paraganglia bind biotinylated interleukin-1 receptor antagonist: a possible mechanism for immune-to-brain communication. Brain Res Bull. 1997;43:357–64.

    CAS  PubMed  Google Scholar 

  107. Vinik AI, Maser RE, Ziegler D. Autonomic imbalance: prophet of doom or scope for hope? Diabet Med. 2011;28:643–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Wu JS, Yang YC, Lin TS, et al. Epidemiological evidence of altered cardiac autonomic function in subjects with impaired glucose tolerance but not isolated impaired fasting glucose. J Clin Endocrinol Metab. 2007;92:3885–9.

    CAS  PubMed  Google Scholar 

  109. Meerwaldt R, Links TP, Graaff R, et al. Increased accumulation of skin advanced glycation end-products precedes and correlates with clinical manifestation of diabetic neuropathy. Diabetologia. 2005;48:1637–44.

    CAS  PubMed  Google Scholar 

  110. Schmidt AM, Yan SD, Yan SF, et al. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest. 2001;108:949–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Toth C, Rong LL, Yang C, et al. Receptor for advanced glycation end products (RAGEs) and experimental diabetic neuropathy. Diabetes. 2008;57:1002–17.

    CAS  PubMed  Google Scholar 

  112. Takuma K, Fang F, Zhang W, et al. RAGE-mediated signaling contributes to intraneuronal transport of amyloidbeta and neuronal dysfunction. Proc Natl Acad Sci U S A. 2009;106:20021–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Witzke KA, Vinik AI, Grant LM, et al. Loss of RAGE defense: a cause of Charcot neuroarthropathy? Diabetes Care. 2011;34:1617–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Lieb D, Parson H, Mamikunian G, Vinik A. Cardiac autonomic imbalance in newly diagnosed and established diabetes is associated with markers of adipose tissue inflammation. Exp Diabetes Res. 2012;2011:1–8.

    Google Scholar 

  115. von Kanel R, Nelesen RA, Mills PJ, Ziegler MG, Dimsdale JE. Relationship between heart rate variability, Interleukin-6, and soluble tissue factor in healthy subjects. Brain Behav Immun. 2008;22:461–8.

    Google Scholar 

  116. Aysin E, Nonogaki K, Lowe M. A potential new indicator of weight gain: autonomic nervous system activity. Annual scientific meeting of NAASO, The Obesity Society, Boston, 20–24 Oct 2006.

    Google Scholar 

  117. Paolisso G, Manzella D, Montano N, Gambardella A, Varricchio M. Plasma leptin concentrations and cardiac autonomic nervous system in healthy subjects with different body weights. J Clin Endocrinol Metab. 2000;85:1810–4.

    CAS  PubMed  Google Scholar 

  118. Wakabayashi S, Aso Y. Adiponectin concentrations in sera from patients with type 2 diabetes are negatively associated with sympathovagal balance as evaluated by power spectral analysis of heart rate variation. Diabetes Care. 2004;27:2392–7.

    CAS  PubMed  Google Scholar 

  119. Scranton RE, Gaziano JM, Rutty D, Ezrokhi M, Cincotta A. A randomized, double-blind, placebo-controlled trial to assess safety and tolerability during treatment of type 2 diabetes with usual diabetes therapy and either Cycloset or placebo. BMC Endocr Disord. 2007;7:3. doi:10.1186/1472-6823-7-3.

    PubMed Central  PubMed  Google Scholar 

  120. Pop-Busui R, Evans GW, Gerstein HC, Fonseca V, Fleg JL, Hoogwerf BJ, Genuth MS, Grimm RH, Corson MA, Prineas R, ACCORD Study Group. Effects of cardiac autonomic dysfunction on mortality risk in the action to control cardiovascular risk in diabetes (ACCORD) trial. Diabetes Care. 2010;33:1578–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Calles-Escandon J, Lovato L, Simons-Morton D, Kendell D, Pop-Busui R, Cohen R, Bonds D, Fonseca V, Ismail-Beigi F, Banerji M, Failor A, Hamilton B. Effect of intensive compared with standard glycemia treatment strategies on mortality by baseline subgroup characteristics. Diabetes Care. 2010;33:721–7.

    PubMed Central  PubMed  Google Scholar 

  122. Vinik AI, Mehrabyan A. Diabetic neuropathies. Med Clin N Am. 2004;88:947–99.

    CAS  PubMed  Google Scholar 

  123. Bernik TR, Friedman SG, Ochani M, DiRaimo R, Ulloa L, Yang H, Sudan S, Czura CJ, Ivanova SM, Tracey KJ. Pharmacological stimulation of the cholinergic anti-inflammatory pathway. J Exp Med. 2002;195:781–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Van Maanen MA, Vervoordeldonk MJ, Tak PP. The cholinergic anti-inflammatory pathway: towards innovative treatment of rheumatoid arthritis. Nat Rev Rheumatol. 2009;5:229–32.

    PubMed  Google Scholar 

  125. Vinik AI, Nevoret ML, Casellini CM, Parson H. Diabetic neuropathy. Endocrinol Metab Clin N Am. 2013;42(4):747–87.

    Google Scholar 

  126. Vinik AI, Strotmeyer ES, Nakave AA, Patel CV. Diabetic neuropathy in older adults. Clin Ger Med. 2008;24:407–35.

    Google Scholar 

  127. Vinik AI, Murray GL. Autonomic neuropathy is treatable. US Endocrinol. 2008;2:82–4.

    Google Scholar 

  128. Vinik AI, Erbas T. Cardiovascular autonomic neuropathy: diagnosis and management. Curr Diab Rep. 2006;6:424–30.

    CAS  PubMed  Google Scholar 

  129. Diabetes Control and Complications Trial (DCCT). The effect of intensive diabetes therapy on measures of autonomic nervous system function in the Diabetes Control and Complications Trial (DCCT). Diabetologia. 1998;41:416–23.

    Google Scholar 

  130. DCCT EDIC Research Group. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353:2643–53.

    Google Scholar 

  131. Gaede P, Vedel P, Larsen N, Jensen G, Parving H, Pedersen O. Multi-factorial intervention and cardiovascular disease in patients with type2 diabetes. N Engl J Med. 2003;348:383–93.

    PubMed  Google Scholar 

  132. Bourcier ME, Vinik AI. Case1: a novel treatment for pain in chronic inflammatory demyelinating polyneuropathy. Pain Med News. 2010;78–80. Available at: www.painmedicinenews.com.

  133. Ziegler D, Schatz H, Conrad F, Gries FA, Ulrich H, Reichel G. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Deutsche Kardiale Autonome Neuropathie. Diabetes Care. 1997;20:369–73.

    CAS  PubMed  Google Scholar 

  134. Ziegler D, Low PA, Litchy WJ, Boulton AJM, Vinik AI, Freeman R, NATHAN 1 Trial Group. Efficacy and safety of antioxidant treatment with α-lipoic acid over 4 years in diabetic polyneuropathy. Diabetes Care. 2011;34:2054–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Tesfaye S, Boulton AJ, Dyck PJ, Freeman R, Horowitz M, Kempler P, Lauria G, Malik RA, Spallone V, Vinik A, Bernardi L, Valensi P, Toronto Diabetic Neuropathy Expert Group. Diabetic neuropathies update on definitions diagnostic criteria estimation of severity and treatments. Diabetes Care. 2010;33:2285–93.

    PubMed Central  PubMed  Google Scholar 

  136. Pavlov VA, Ochani M, Yang LH, Gallowitsch-Puerta M, Ochani K, Lin X, Levi J, Parrish WR, Rosas-Ballina M, Czura CJ, Larosa GJ, Miller EJ, Tracey KJ, Al-Abed Y. Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med. 2007;35:1139–44.

    CAS  PubMed  Google Scholar 

  137. Motooka M, Koike H, Yokoyama T, Kennedy NL. Effect of dog-walking on autonomic nervous activity in senior citizens. Med J Aust. 2006;184:60–3.

    PubMed  Google Scholar 

  138. Gaede P, Vedel P, Parving HH, Pedersen O. Intensified multifactorial intervention in patients with type 2 diabetes mellitus and microalbuminuria: the steno type 2 randomized study. Lancet. 1999;353:617–22.

    Google Scholar 

  139. Gaede P, Lund-Andersen H, Parving HH, Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Engl J Med. 2008;358:580–91.

    Google Scholar 

  140. Vinik AI, Ullal J, Parson HK, Casellini CM. Diabetic neuropathies: clinical manifestations and current treatment options. Nat Clin Pract Endocrinol Metab. 2006;2(4):1–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colombo, J., Arora, R., DePace, N.L., Vinik, A.I. (2015). General Autonomic Disorders. In: Clinical Autonomic Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-319-07371-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07371-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07370-5

  • Online ISBN: 978-3-319-07371-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics