Skip to main content

The Progression of Autonomic Dysfunction in Chronic Disease

  • 1666 Accesses

Abstract

Normally, when we are born, we are born with as healthy an ANS as we will have: our resting response is in the middle of the gray area on the baseline response plot. When we are no longer breathing, there is no power in either ANS branch: our resting response is at the bottom left corner of the baseline response plot. The middle diagonal line connecting the two points, the perfect balance line, turns out to be the slowest path from birth to death. This means that the ANS will decline, even if we live a “perfectly healthy life.” As will be demonstrated, chronic disease accelerates this decline. Fortunately, as has been demonstrated in the previous chapter, establishing and maintaining proper balance for the individual can return the patient to a “normal” decline, slowing the progression of autonomic dysfunction as much as possible, minimizing morbidity and mortality risk. Note that the progression plots are not from numbers of patients followed from birth; they are composite plots from large populations of subjects covering the ages. Albeit balance has become the key to promoting and maintaining health and minimizing morbidity and mortality risk. These plots demonstrate the difference between normal aging balance and disease balance.

Keywords

  • Autonomic Dysfunction
  • Autonomic Neuropathy
  • Coronary Artery Disease Patient
  • Parasympathetic Activity
  • Cardiovascular Autonomic Neuropathy

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07371-2_12
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-07371-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.00
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 12.1
Fig. 12.2
Fig. 12.3
Fig. 12.4
Fig. 12.5
Fig. 12.6
Fig. 12.7
Fig. 12.8
Fig. 12.9
Fig. 12.10

References

  1. Vinik AI, Arora RR, Colombo J. Age matched attenuation of both autonomic branches in chronic disease: II. Diabetes mellitus. Cleveland Clinic Heart-Brain Summit, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, 23–24 Sept 2010.

    Google Scholar 

  2. Umetani K, Singer DH, McCraty R, Atkinson M. Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol. 1998;31(3):593–601.

    CAS  PubMed  CrossRef  Google Scholar 

  3. Arora RR, Ghosh Dastidar S, Colombo J. Autonomic balance is associated with decreased morbidity. American Autonomic Society, 17th International Symposium, Kauai, 29 Oct – 1 Nov 2008.

    Google Scholar 

  4. Waheed A, Ali MA, Jurivich DA, et al. Gender differences in longevity and autonomic function. Presented at the Geriatric Medicine Society Meeting, Chicago. 3–7 May 2006.

    Google Scholar 

  5. Tsuji H, Venditti Jr FJ, Manders ES, Evans JC, Larson MG, Feldman CL, Levy D. Reduced heart rate variability and mortality risk in an elderly cohort. The Framingham Heart Study. Circulation. 1994;90(2):878–83.

    CAS  PubMed  CrossRef  Google Scholar 

  6. Monmeneu JV, Chorro FJ, Bodi V, Sanchis J, Llacer A, Garcia-Civera R, Ruiz R, Sanjuan R, Burguera M, Lopez-Merino V. Relationships between heart rate variability, functional capacity, and left ventricular function following myocardial infarction: an evaluation after one week and six months. Clin Cardiol. 2001;24:313–20.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Rich MW, Saini JS, Kleiger RE, Carney RM, teVelde A, Freedland KE. Correlation of heart rate variability with clinical and angiographic variables and late mortality after coronary angiography. Am J Cardiol. 1988;62:714–7.

    CAS  PubMed  CrossRef  Google Scholar 

  8. Hayano J, Sakakibara Y, Yamada M, Ohte N, Fujinami T, Yokoyama K, Watanabe Y, Takata K. Decreased magnitude of heart rate spectral components in coronary artery disease. Its relation to angiographic severity. Circulation. 1990;81:1217–24.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Bonnemeier H, Richardt G, Potratz J, Wiegand UK, Brandes A, Kluge N, Katus HA. Circadian profile of cardiac autonomic nervous modulation in healthy subjects: differing effects of aging and gender on heart rate variability. J Cardiovasc Electrophysiol. 2003;14:791–9.

    PubMed  CrossRef  Google Scholar 

  10. Wennerblom B, Lurje L, Tygesen H, Vahisalo R, Hjalmarson A. Patients with uncomplicated coronary artery disease have reduced heart rate variability mainly affecting vagal tone. Heart. 2000;83:290–4.

    CAS  PubMed Central  PubMed  CrossRef  Google Scholar 

  11. Latson TW, Ashmore TH, Reinhart DJ, Klein KW, Giesecke AH. Autonomic reflex dysfunction in patients presenting for elective surgery is associated with hypotension after anesthesia induction. Anesthesiology. 1994;80:326–37.

    CAS  PubMed  CrossRef  Google Scholar 

  12. Parmer RJ, Cervenka JH, Stone RA, O’Connor DT. Autonomic function in hypertension. Are there racial differences? Circulation. 1990;81:1305–11.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Guzzetti S, Piccaluga E, Casati R, Cerutti S, Lombardi F, Pagani M, Malliani A. Sympathetic predominance in essential hypertension: a study employing spectral analysis of heart rate variability. J Hypertens. 1988;6:711–7.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Istenes I, Keresztes K, Hermanyi Z, Putz Z, Vargha P, Gandhi R, Tesfaye S, Kempler P. Relationship between autonomic neuropathy and hypertension–are we underestimating the problem? Diabet Med. 2008;25:863–6.

    CAS  PubMed  CrossRef  Google Scholar 

  15. Alter P, Grimm W, Vollrath A, Czerny F, Maisch B. Heart rate variability in patients with cardiac hypertrophy–relation to left ventricular mass and etiology. Am Heart J. 2006;151(4):829–36.

    PubMed  CrossRef  Google Scholar 

  16. Packer M. Neurohormonal interactions and adaptations in congestive heart failure. Circulation. 1988;77:721–30.

    CAS  PubMed  CrossRef  Google Scholar 

  17. Rea RF, Berg WJ. Abnormal baroreflex mechanisms in congestive heart failure. Recent insights. Circulation. 1990;81:2026–7.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Saul JP, Arai Y, Berger RD, Lilly LS, Colucci WS, Cohen RJ. Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol. 1988;61:1292–9.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Trimarco B, Lembo G, De Luca N, Volpe M, Ricciardelli B, Condorelli G, Rosiello G, Condorelli M. Blunted sympathetic response to cardiopulmonary receptor unloading in hypertensive patients with left ventricular hypertrophy. A possible compensatory role of atrial natriuretic factor. Circulation. 1989;80:883–92.

    CAS  PubMed  CrossRef  Google Scholar 

  20. Piccirillo G, Fimognari FL, Munizzi MR, Bucca C, Cacciafesta M, Marigliano V. Age-dependent influence on heart rate variability in salt-sensitive hypertensive subjects. J Am Geriatr Soc. 1996;44:530–8.

    CAS  PubMed  Google Scholar 

  21. Lipsitz LA, Mietus J, Moody GB, Goldberger AL. Spectral characteristics of heart rate variability before and during postural tilt. Relations to aging and risk of syncope. Circulation. 1990;81:1803–10.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Farrell TG, Paul V, Cripps TR, Malik M, Bennett ED, Ward D, Camm AJ. Baroreflex sensitivity and electrophysiological correlates in patients after acute myocardial infarction. Circulation. 1991;83:945–52.

    CAS  PubMed  CrossRef  Google Scholar 

  23. Schwartz PJ, Vanoli E, Stramba-Badiale M, De Ferrari GM, Billman GE, Foreman RD. Autonomic mechanisms and sudden death. New insights from analysis of baroreceptor reflexes in conscious dogs with and without a myocardial infarction. Circulation. 1988;78:969–79.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Lombardi F, Sandrone G, Pernpruner S, Sala R, Garimoldi M, Cerutti S, Baselli G, Pagani M, Malliani A. Heart rate variability as an index of sympathovagal interaction after acute myocardial infarction. Am J Cardiol. 1987;60:1239–45.

    CAS  PubMed  CrossRef  Google Scholar 

  25. La Rovere MT, Bigger Jr JT, Marcus FI, Mortara A, Schwartz PJ. Baroreflex sensitivity and heart-rate variability in prediction of total cardiac mortality after myocardial infarction. ATRAMI (Autonomic Tone and Reflexes After Myocardial Infarction) Investigators. Lancet. 1998;351:478–84.

    PubMed  CrossRef  Google Scholar 

  26. Bauer A, Kantelhardt JW, Barthel P, Schneider R, Makikallio T, Ulm K, Hnatkova K, Schomig A, Huikuri H, Bunde A, Malik M, Schmidt G. Deceleration capacity of heart rate as a predictor of mortality after myocardial infarction: cohort study. Lancet. 2006;367:1674–81.

    PubMed  CrossRef  Google Scholar 

  27. Ponikowski P, Anker SD, Chua TP, Szelemej R, Piepoli M, Adamopoulos S, Webb-Peploe K, Harrington D, Banasiak W, Wrabec K, Coats AJ. Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol. 1997;79:1645–50.

    CAS  PubMed  CrossRef  Google Scholar 

  28. American Diabetes Association. Standards of medical care in diabetes – 2008. Diabetes Care. 2008;31 Suppl 1:S12–54.

    CrossRef  Google Scholar 

  29. American Diabetes Association. Standards of medical care in diabetes – 2013. Diabetes Care. 2013;36 Suppl 1:S11–66.

    PubMed Central  CrossRef  Google Scholar 

  30. Vinik AI, Maser RE, Nakave AA. Diabetic cardiovascular autonomic nerve dysfunction. US Endocrine Disease. 2007;2:2–9.

    Google Scholar 

  31. Vinik A, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    PubMed  CrossRef  Google Scholar 

  32. Vinik AI, Aysin B, Colombo J. Enhanced frequency domain analysis replaces older heart rate variability methods. Fourth Annual Diabetes Technology Meeting, Philadelphia, 28–30 Oct 2004.

    Google Scholar 

  33. Akinola A, Bleasdale-Barr K, Everall L, Mathias CJ. Investigation of autonomic disorders: appendix I. In: Mathias CJ, Bannister R, editors. Autonomic failure: a textbook of clinical disorders of the autonomic nervous system. London: Oxford Medical Publications; 1999.

    Google Scholar 

  34. Arora RR, Ghosh-Dastidar S, Colombo J. Age matched attenuation of autonomic activity in both branches in chronic hypertension. Clin Auton Res. 2008;18(5):276.

    Google Scholar 

  35. Curtis BM, O’Keefe JH. Autonomic tone as a cardiovascular risk factor: the dangers of chronic fight or flight. Mayo Clin Proc. 2002;77:45–54.

    PubMed  CrossRef  Google Scholar 

  36. Arora RR, Ghosh Dastidar S, Colombo J. Altered sympathetic and parasympathetic activity is associated in patients with chronic coronary artery disease. Clin Auton Res. 2008;18(5):277.

    Google Scholar 

  37. Nemechek P, Ghosh Dastidar S, Colombo J. HIV/AIDS leads to early cardiovascular autonomic neuropathy. St. Thomas: American Autonomic Society; 2009.

    Google Scholar 

  38. Boulton AJM, Vinik AI, Arrezzo JC, Bril V, Feldman EI, Freeman R, Malik RA, Maser RE, Sosenko JM, Ziegler D. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28(4):956–62.

    PubMed  CrossRef  Google Scholar 

  39. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care. 2003;26(5):1553–79.

    PubMed  CrossRef  Google Scholar 

  40. Aring AM, Jones DE, Falko JM. Evaluation and prevention of diabetic neuropathy. Am Fam Physician. 2005;71:2123–30.

    PubMed  Google Scholar 

  41. Low PA, The Therapeutics and Technology Assessment Subcommittee Assessment. Clinical autonomic testing report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 1996;46:873–80.

    Google Scholar 

  42. Joint Editorial Statement by the American Diabetes Association; the National Heart, Lung, and Blood Institute; the Juvenile Diabetes Foundation International; the National Institute of Diabetes and Digestive and Kidney Diseases; and the American Heart Association. Diabetes mellitus: a major risk factor for cardiovascular disease. Circulation. 1999;100:1132–3.

    CrossRef  Google Scholar 

  43. Grundy SM, Benjamin IJ, Burke GL, Chait A. AHA scientific statement: diabetes and cardiovascular disease, a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134–46.

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Colombo, J., Arora, R., DePace, N.L., Vinik, A.I. (2015). The Progression of Autonomic Dysfunction in Chronic Disease. In: Clinical Autonomic Dysfunction. Springer, Cham. https://doi.org/10.1007/978-3-319-07371-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07371-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07370-5

  • Online ISBN: 978-3-319-07371-2

  • eBook Packages: MedicineMedicine (R0)