Prediction of an Optimum Parametric Combination for Minimum Thrust Force in Bone Drilling: A Simulated Annealing Approach

Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 27)


Minimally invasive drilling of bone has a great demand in orthopaedic surgical process as it helps in better fixation and quick healing of the damaged bones. The aim of the present study is to find out the optimal setting of the bone drilling parameters (spindle speed and feed rate) for minimum thrust force during bone drilling using simulated annealing (SA). The bone drilling experiments were carried out by central composite design scheme and based on the results obtained, a response surface model for thrust force as a function of drilling parameters is developed. This model is used as an objective function in the SA approach. The results of the confirmation experiments showed that the SA can effectively predict the optimal settings of spindle speed and feed rate for minimum thrust force during bone drilling. The suggested methodology can be very useful for orthopaedic surgeons to minimize the drilling induced bone tissue injury.


Bone drilling Thrust force Response surface methodology Simulated annealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pandey, R.K., Panda, S.S.: Drilling of bone: A comprehensive review. Journal of Clinical Orthopedics and Trauma 4, 15–30 (2013)CrossRefGoogle Scholar
  2. 2.
    Lee, J., Gozen, A.B., Ozdoganlar, O.B.: Modeling and experimentation of bone drilling forces. Journal of Biomechanics 45, 1076–1083 (2012)CrossRefGoogle Scholar
  3. 3.
    Thompson, H.C.: Effect of drilling into bone. Journal of Oral Surgery 16, 22–30 (1958)Google Scholar
  4. 4.
    Wiggins, K.L., Malkin, S.: Drilling of bone. Journal of Biomechanics 9, 553–559 (1976)CrossRefGoogle Scholar
  5. 5.
    Brett, P.N., Baker, D.A., Taylor, R., Griffiths, M.V.: Controlling the penetration of flexible bone tissue using the stapedotomy micro drill. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 218, 343–351 (2004)CrossRefGoogle Scholar
  6. 6.
    Kendoff, D., Citak, M., Gardner, M.J., Stubig, T., Krettek, C., Hufner, T.: Improved accuracy of navigated drilling using a drill alignment device. Journal of Orthopaedic Research 25, 951–957 (2007)CrossRefGoogle Scholar
  7. 7.
    Ong, F.R., Bouazza-Marouf, K.: The detection of drill-bit break-through for the enhancement of safety in mechatronic assisted orthopaedic drilling. Mechatronics 9, 565–588 (1999)CrossRefGoogle Scholar
  8. 8.
    Price, M., Molloy, S., Solan, M., Sutton, A., Ricketts, D.M.: The rate of instrument breakage during orthopaedic procedures. International Orthopedics 26, 185–187 (2002)CrossRefGoogle Scholar
  9. 9.
    Bassi, J.L., Pankaj, M., Navdeep, S.: A technique for removal of broken cannulated drill-bit: Bassi’s method. Journal of Orthopaedic Trauma 22, 56–58 (2008)CrossRefGoogle Scholar
  10. 10.
    Augustin, G., Davila, S., Mihoci, K., Udiljak, T., Vedrina, D.S., Antabak, A.: Thermal osteonecrosis and bone drilling parameters revisited. Archives of Orthopaedic and Trauma Surgery 128, 71–77 (2008)CrossRefGoogle Scholar
  11. 11.
    Abouzgia, M.B., James, D.F.: Temperature rise during drilling through bone. International Journal of Oral and Maxillofacial Implants 12, 342–3531 (1997)Google Scholar
  12. 12.
    Hobkirk, J.A., Rusiniak, K.: Investigation of variable factors in drilling bone. Journal of Oral and Maxillofacial Surgery 35, 968–973 (1977)Google Scholar
  13. 13.
    Jacobs, C.H., Berry, J.T., Pope, M.H., Hoaglund, F.T.: A study of the bone machining process-drilling. Journal of Biomechanics 9, 343–349 (1976)CrossRefGoogle Scholar
  14. 14.
    Albrektsson, T.: Measurements of shaft speed while drilling through bone. Journal of Oral and Maxillofacial Surgery 53, 1315–1316 (1995)CrossRefGoogle Scholar
  15. 15.
    Myers, R.H., Montgomery, D.C.: Response surface methodology, 2nd edn. Wiley, New York (2002) ISBN 0-471-41255-4Google Scholar
  16. 16.
    Box, G.E.P., Hunter, J.S., Hunter, W.G.: Statistics for experimenters, 2nd edn. Wiley, New York (2005) ISBN 13978-0471-71813-0Google Scholar
  17. 17.
    Somashekhar, K.P., Mathew, J., Ramachandran, N.: A feasibility approach by simulated annealing on optimization of micro-wire electric discharge machining parameters. Int. J. Adv. Manuf. Technol. 61, 1209–1213 (2012)CrossRefGoogle Scholar
  18. 18.
    Metropolis, N., Rosenbluth, A., Rosenbluth, N., Teller, A., Teller, E.: Equation of state calculation by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)CrossRefGoogle Scholar
  19. 19.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, 671–680 (1983)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Glover, F., Gary, A.K.: Hand book of metaheuristics. Kluwer, London (2003)Google Scholar
  21. 21.
    Van, P.J., Laarhoven, E.H.A.: Simulated annealing: theory and applications. Kluwer, London (1987)MATHGoogle Scholar
  22. 22.
    Karaca, F., Aksakal, B., Kom, M.: Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia: An in vitro study. Medical Engineering & Physics 33(10), 1221–1227 (2011)CrossRefGoogle Scholar
  23. 23.
    Lee, J., Ozdoganlar, O.B., Rabin, Y.: An experimental investigation on thermal exposure during bone drilling. Medical Engineering & Physics 34(10), 1510–1520 (2012)CrossRefGoogle Scholar
  24. 24.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology PatnaPatnaIndia

Personalised recommendations