An Immune System Inspired Algorithm for Protein Function Prediction

  • Archana Chowdhury
  • Amit Konar
  • Pratyusha Rakshit
  • Janarthanan Ramadoss
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 27)

Abstract

An important problem in the field of bioinformatics research is assigning functions to proteins that have not been annotated. The extent, to which protein function is predicted accurately, depends largely on the Protein-Protein interaction network. It has been observed that bioinformatics applications are benefited by comparing proteins on the basis of biological role. Similarity based on Gene Ontology is a good way of exploring the above mentioned fact. In this paper we propose a novel approach for protein function prediction by utilizing the fact that most of the proteins which are connected in Protein-Protein Interaction network, tend to have similar functions. Our approach, an immune system-inspired meta-heuristic algorithm, known as Clonal Selection Algorithm (CSA), randomly associates functions to unannotated proteins and then optimizes the score function which incorporates the extent of similarity between the set of functions of unannotated protein and annotated protein. Experimental results reflect that our proposed method outperforms other state of the art algorithms in terms of precession, recall and F-value, when utilized to predict the protein function of Saccharomyces Cerevisiae.

Keywords

protein function prediction protein-protein interaction network gene ontology annotated protein clonal selection algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breitkreutz, B.J., Stark, C., Reguly, T., Boucher, L., Breitkreutz, A., Livstone, M., Oughtred, R., Lackner, D.H., Bähler, J., Wood, V., Dolinski, K., Tyers, M.: The BioGRID Interaction Database: 2008 Update. Nucleic Acids Research 36, D637– D640(2008)Google Scholar
  2. 2.
    Deng, M.H., Zhang, K., Mehta, S., Chen, T., Sun, F.Z.: Prediction of protein function using protein-protein interaction data. Journal of Computational Biology 10(6), 947–960 (2003)CrossRefGoogle Scholar
  3. 3.
    Schwikowski, B., Uetz, P., Field, S.: A network of protein protein interactions in yeast. Nature Biotechnology 18, 1257–1261 (2000)CrossRefGoogle Scholar
  4. 4.
    Lord, P.W., Stevens, R.D., Brass, A., Goble, C.A.: Investigating semantic similarity meas-ures across the Gene Ontology: the relationship between sequence and annotation. Bioinformatics 19(10), 1275–1283 (2003)CrossRefGoogle Scholar
  5. 5.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Proceedings of International Joint Conference for Artificial Intelligence, pp. 448–453 (1995)Google Scholar
  6. 6.
    Castro, D., Nunes, L., Zuben, F.J.V.: The clonal selection algorithm with engineering appli-cations. In: Proceedings of GECCO, pp. 36–39 (2000)Google Scholar
  7. 7.
    Felipe, C., Guimarães, F.G., Igarashi, H., Ramírez, J.A.: A clonal selection algorithm for optimization in electromagnetics. IEEE Transactions on Magnetics 41(5), 1736–1739 (2005)CrossRefGoogle Scholar
  8. 8.
    Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski, K., Dwight, S., Eppig, J.: Gene ontology: tool for the unification of biology. Nature Genetics 25, 25–29 (2000)CrossRefGoogle Scholar
  9. 9.
    Dwight, S., Harris, M., Dolinski, K., Ball, C., Binkley, G., Christie, K., Fisk, D., Issel Tarv-er, L., Schroeder, M., Sherlock, G.: Saccharomyces Genome Database (SGD) provides sec-ondary gene annotation using the Gene Ontology (GO). Nucleic Acids Research 30, 69–72 (2012)CrossRefGoogle Scholar
  10. 10.
    Chowdhury, A., Konar, A., Rakshit, P., Janarthanan, R.: Protein Function Prediction Using Adaptive Swarm Based Algorithm. SEMCCO 2, 55–68 (2013)Google Scholar
  11. 11.
    Stark, C., Breitkreutz, B.J., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006)Google Scholar
  12. 12.
    Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning, pp. 760–766 (2010)Google Scholar
  14. 14.
    Chua, H.N., Sung, W.-K., Wong, L.: Exploiting indirect neighbors antopological weight to predict protein function from protein protein interactions. Bioinformatics 22(13), 1623–1630 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Archana Chowdhury
    • 1
  • Amit Konar
    • 1
  • Pratyusha Rakshit
    • 1
  • Janarthanan Ramadoss
    • 2
  1. 1.Electronics and Telecommunication Engineering DepartmentJadavpur UniversityKolkataIndia
  2. 2.Department of Compuiter Science EngineeringTJS College of EngineeringChennaiIndia

Personalised recommendations