A New Indexing Method for Biometric Databases Using Match Scores and Decision Level Fusion

  • Ilaiah Kavati
  • Munaga V. N. K. Prasad
  • Chakravarthy Bhagvati
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 27)

Abstract

This paper proposes a new clustering-based indexing technique for large biometric databases. We compute a fixed length index code for each biometric image in the database by computing its similarity against a preselected set of sample images. An efficient clustering algorithm is applied on the database and the representative of each cluster is selected for the sample set. Further, the indices of all individuals are stored in an index table. During retrieval, we calculate the similarity between query image and each of the cluster representative (i.e., query index code) and select the clusters that have similarities to the query image as candidate identities. Further, the candidate identities are also retrieved based on the similarity between index of query image and those of the identities in the index table using voting scheme. Finally, we fuse the candidate identities from clusters as well as index table using decision level fusion. The technique has been tested on benchmark PolyU palm print database consist of 7,752 images and the results show a better performance in terms of response time and search speed compared to the state of art indexing methods.

Keywords

Palm print Indexing Clustering Sample images Match scores Decision level fusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A.K., Pankanti, S.: Automated fingerprint identification and imaging systems. In: Advances in Fingerprint Technology, 2nd edn. Elsevier Science (2001)Google Scholar
  2. 2.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal on Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  3. 3.
    Henry Classification System International Biometric Group (2003), http://www.biometricgroup.com/HenryFingerprintClassification.pdf
  4. 4.
    Wu, X., Zhang, D., Wang, K., Huang, B.: Palmprint classification using principal lines. Pattern Recognition 37, 1987–1998 (2004)CrossRefMATHGoogle Scholar
  5. 5.
    Boro, R., Roy, S.D.: Fast and Robust Projective Matching for Finger prints using Geometric Hashing. In: Indian Conference on Computer Vision, Graphics and Image Processing, pp. 681–686 (2004)Google Scholar
  6. 6.
    Mehrotra, H., Majhi, B., Gupta, P.: Robust iris indexing scheme using geometric hashing of SIFT keypoints. Journal of Network and Computer Applications 33, 300–313 (2010)CrossRefGoogle Scholar
  7. 7.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys 31(3) (1999)Google Scholar
  8. 8.
    Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer (2003)Google Scholar
  9. 9.
    Mhatre, A., Palla, S., Chikkerur, S., Govindaraju, V.: Efficient search and retrieval in biometric databases. Biometric Technology for Human Identification II 5779, 265–273 (2005)CrossRefGoogle Scholar
  10. 10.
    The PolyU palmprint database, http://www.comp.polyu.edu.hk/biometrics
  11. 11.
    Bhanu, B., Tan, X.: Fingerprint indexing based on novel features of minutiae triplets. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 616–622 (2003)CrossRefGoogle Scholar
  12. 12.
    Kavati, I., Prasad, M.V.N.K., Bhagvati, C.: Vein Pattern Indexing Using Texture and Hierarchical Decomposition of Delaunay Triangulation. In: Thampi, S.M., Atrey, P.K., Fan, C.-I., Perez, G.M. (eds.) SSCC 2013. CCIS, vol. 377, pp. 213–222. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Jayaraman, U., Prakash, S., Gupta, P.: Use of geometric features of principal components for indexing a biometric database. Mathematical and Computer Modelling 58, 147–164 (2013)CrossRefGoogle Scholar
  14. 14.
    Maeda, T., Matsushita, M., Sasakawa, K.: Identification algorithm using a matching score matrix. IEICE Transactions in Information and Systems 84, 819–824 (2001)Google Scholar
  15. 15.
    Gyaourova, A., Ross, A.: Index Codes for Multi biometric Pattern retrieval. IEEE Transactions on Information Forensics and Security 7, 518–529 (2012)CrossRefGoogle Scholar
  16. 16.
    Paliwal, A., Jayaraman, U., Gupta, P.: A score based indexing scheme for palmprint databases. In: International Conference on Image Processing, pp. 2377–2380 (2010)Google Scholar
  17. 17.
    Weber, R., Schek, H., Blott, S.: A quantative analysis and performance study for similarity search methods in high-dimensional spaces. In: Proceedings of the 24th Very Large Database Conference, pp. 194–205 (1998)Google Scholar
  18. 18.
    Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer, New York (2006)Google Scholar
  19. 19.
    Kumar, A., Shekhar, S.: Personal identification using multibiometrics rank-level fusion. IEEE Transactions on Systems, Man and Cybernetics 41, 743–752 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ilaiah Kavati
    • 1
    • 2
  • Munaga V. N. K. Prasad
    • 2
  • Chakravarthy Bhagvati
    • 1
  1. 1.University of HyderabadHyderabadIndia
  2. 2.Institute for Development and Research in Banking TechnologyHyderabadIndia

Personalised recommendations