Data Dependencies and Normalization of Intuitionistic Fuzzy Databases

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 27)

Abstract

Intuitionistic Fuzzy sets can be considered as a generalization of Fuzzy sets. It is an emerging branch of research on soft computing. Intuitionistic Fuzzy logic adds the indeterminacy factor to the Fuzzy logic techniques and is thus capable to solve multi-state logical problems. It can help machines make complex decisions, involving degrees of uncertainty and imprecision. In order to facilitate efficient retrieval and updating, the data stored in the Intuitionistic Fuzzy databases has to have an efficient information base, which can be ensured by proper organization of data. In this paper, we propose Intuitionistic Fuzzy Normalization. This process decomposes the Intuitionistic fuzzy relation into sub relations, in order to provide an efficient storage mechanism. We define data dependencies and their properties and use the same for Normalizing Intuitionistic fuzzy databases.

Abbreviations: IF (Intuitionistic Fuzzy), IFS (Intuitionistic Fuzzy Set), IFDB (Intuitionistic Fuzzy database), IFFD (Intuitionistic Fuzzy Functional dependency), NF – IF or NF (IF) (Intuitionistic Fuzzy normal form)

Keywords

Intuitionistic Fuzzy normal forms Intuitionistic Fuzzy key BCNF (IF) Soft Computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alam, A., Ahmad, S., Biswas, R.: Normalization of Intuitionistic Fuzzy Relational Database. NIFS 10(1), 1–6 (2004)Google Scholar
  2. 2.
    Hussain, S., Alam, A., Biswas, R.: Normalization of Intuitionistic Fuzzy Relational Database into second normal form- 2NF (IF). International J. of Math. Sci. &Engg. Appls. 3(III), 87–96 (2009)Google Scholar
  3. 3.
    Hussain, S., Alam, A.: Normalization of Intuitionistic Fuzzy Relational Database into third normal form- 3NF (IF). International J. of Math. Sci. & Engg. Appls. 4(I), 151–157 (2010)Google Scholar
  4. 4.
    Attanasov, K.T.: Intuitionistic Fuzzy sets. Physica Verlag (1999)Google Scholar
  5. 5.
    Shora, A.R., Alam, M.A., Siddiqui, T.: Knowledge-driven Intuitionistic Fuzzy Decision Support for finding out the causes of Obesity. International Journal on Computer Science and Engineering 4(3) (2012)Google Scholar
  6. 6.
    Buckles, B.P., Petry, F.E.: A fuzzy representation of data for relational databases. Fuzzy sets and Systems 7(3), H213–H226 (1982)Google Scholar
  7. 7.
    De, S.K., Biswas, R., Roy, A.R.: Intuitionistic Fuzzy Database. In: Second International Conference on IFS, pp. 34–41 (1998)Google Scholar
  8. 8.
    Codd, E.F.: Recent Investigations into Relational Data Base Systems. IBM Research ReportRJ1385 (1974)Google Scholar
  9. 9.
    Raju, K.V.S.V.N., Majumdar, A.K.: Fuzzy Functional dependencies and lossless join decomposition of Fuzzy Relational database systems. ACM Transactions on Database Systems 13(2), 129–166 (1988)CrossRefGoogle Scholar
  10. 10.
    Jyothi, S., Babu, M.S.: Multivalued dependencies in Fuzzy relational databases and loss less join decomposition. Fuzzy Sets and Systems 88, 315–332 (1997)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Vucetic, M., Hudecb, M., Vujosevica, M.: A new method for computing fuzzy functional dependencies in relational database systems. Expert Systems with Application 40(7), 2738–2745 (2013)CrossRefGoogle Scholar
  12. 12.
    Shora, A.R., Alam, M.A., Biswas, R.: A comparative Study of Fuzzy and Intuitionistic Fuzzy Techniques in a Knowledge based Decision Support. International Journal of Computer Applications 53(7) (2012)Google Scholar
  13. 13.
    Kumar, D.A., Al-adhaileh, M.H., Biswas, R., Al-adhaileh, M.H., Biswas, R.: A Method of Intuitionistic Fuzzy Functional Dependencies in Relational Databases. European Journal of Scientific Research 29(3), 415–425 (2009)Google Scholar
  14. 14.
    Shenoi, S., Melton, A., Fan, L.T.: Functional dependencies and normal forms in the fuzzy relational database model. Information Sciences 60(1-2), 1–28 (1992)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Deschrijver, G., Kerre, E.E.: On the composition of Intuitionistic fuzzy relations. Fuzzy Sets and Systems 136, 333–361 (2003)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Umano, M.: FREEDOM-O. In: Gupta, M.M., Sanchez, E. (eds.) A Fuzzy Database System. Fuzzy Information and Decision Processes, pp. 339–349. North Holland, Amsterdam (1982)Google Scholar
  17. 17.
    Hamouz, S.A., Biswas, R.: Fuzzy Functional Dependencies in Relational Databases. International Journal of Computational Cognition 4(1) (2006)Google Scholar
  18. 18.
    Atanassov, K.T.: Intuitionistic Fuzzy Sets Past, Present and Future. In: 3rd Conference of the European Society for Fuzzy Logic and Technology (2003)Google Scholar
  19. 19.
    Boran, F.E.: An integrated intuitionistic fuzzy multicriteria decision making method for facility location selection. Mathematical and Computational Applications 16(2), 487–496 (2011)MATHMathSciNetGoogle Scholar
  20. 20.
    Beaubouefa, T., Petry, E.F.: Uncertainty modeling for database design using Intuitionistic and rough set theory. Journal of Intelligent & Fuzzy Systems 20 (2009)Google Scholar
  21. 21.
    Yana, L., Ma, Z.M.: Comparison of entity with fuzzy data types in fuzzy object-oriented databases. Integrated Computer-Aided Engineering, 199–212 (2012)Google Scholar
  22. 22.
    Bosc, P., Pivert, O.: Fuzzy Queries Against Regular and Fuzzy Databases. Flexible Query Answering Systems, 187–208 (1997)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceJamia Hamdard UniversityNew DelhiIndia

Personalised recommendations