Online Template Matching Using Fuzzy Moment Descriptor

  • Arup Kumar Sadhu
  • Pratyusha Das
  • Amit Konar
  • Ramadoss Janarthanan
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 27)

Abstract

In this paper a real-time template matching algorithm has been developed using Fuzzy (Type-1 Fuzzy Logic) approach. The Fuzzy membership-distance products, called Fuzzy moment descriptors are estimated using three common image features, namely edge, shade and mixed range. Fuzzy moment description matching is used instead of existing matching algorithms to reduce real-time template matching time. In the proposed matching technique template matching is done invariant to size, rotation and color of the image. For real time application the same algorithm is applied on an Arduino based mobile robot having wireless camera. Camera fetches frames online and sends them to a remote computer for template matching with already stored template in the database using MATLAB. The remote computer sends computed steering and motor signals to the mobile robot wirelessly, to maintain mobility of the robot. As a result, the mobile robot follows a particular object using proposed template matching algorithm in real time.

Keywords

Arduino Real-Time Template Matching Fuzzy Moment Descriptor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biswas, B., Konar, A., Mukherjee, A.K.: Image matching with fuzzy moment descriptors. Engineering Applications of Artificial Intelligenc 14(1), 43–49 (2001)CrossRefGoogle Scholar
  2. 2.
    Konar, A.: Computational Intellingence: Principles, Techniques, and Applications. Springer (2005)Google Scholar
  3. 3.
    Hel-Or, Y., Hel-Or, H.: Real-time pattern matching using projection kernels.  IEEE Transactions onPattern Analysis and Machine Intelligenc 27(9), 1430–1445 (2005)CrossRefGoogle Scholar
  4. 4.
    Baudat, G., Anouar, F.: Feature vector selection and projection using kernels. Neurocomputing 55(1), 21–38 (2003)CrossRefGoogle Scholar
  5. 5.
    Everett, H.R.: Sensors for mobile robots: theory and application. AK Peters, Ltd. (1995)Google Scholar
  6. 6.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley (1992)Google Scholar
  7. 7.
    Wang, Q., You, S.: Real-time image matching based on multiple view kernel projection. In: IEEE Conference on Computer Visio and Pattern Recognition (CVPR 2007). IEEE (2007)Google Scholar
  8. 8.
  9. 9.
    Basturk. B., Karaboga, D.: An artificial bee colony (ABC) algorithm for numeric function optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Arup Kumar Sadhu
    • 1
  • Pratyusha Das
    • 1
  • Amit Konar
    • 1
  • Ramadoss Janarthanan
    • 2
  1. 1.Electronics &Telecommunication Engineering DeptmentJadavpur UniversityKolkataIndia
  2. 2.Computer Science & Engineering DeptmentTJS Engineering CollegeChennaiIndia

Personalised recommendations