Time-Domain Solution of Transmission through Multi-modeled Obstacles for UWB Signals

Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 27)

Abstract

In this work, the time-domain solution for transmission through multi-modeled obstacles has been presented. The transmission through dielectric wedge followed by a dielectric slab has been analyzed. The analytical time-domain transmission and reflection coefficients for transmission through the conductor-dielectric interface, considering oblique incidence, are given for both soft and hard polarizations. The exact frequency-domain formulation for transmitted field at the receiver has been simplified under the condition of low-loss assumption and converted to time-domain formulation using inverse Laplace transform. The time-domain results have been validated with the inverse fast Fourier transform (IFFT) of the corresponding exact frequency-domain results. Further the computational efficiency of both the methods is compared.

Keywords

Ultra wideband Propagation model Transmission Frequencydomain Time-domain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Jong, Y.L.C., Koelen, M.H.J.L., Herben, M.H.A.J.: A building-transmission model for improved propagation prediction in urban microcells. IEEE Trans. Veh. Technol. 53(2), 490–502 (2004)CrossRefGoogle Scholar
  2. 2.
    Soni, S., Bhattacharya, A.: An analytical characterization of transmission through a building for deterministic propagation modeling. Microw. Opt. Techn. Lett. 53(8), 1875–1879 (2011)CrossRefGoogle Scholar
  3. 3.
    Karousos, A., Tzaras, C.: Multiple time-domain diffraction for UWB signals. IEEE Trans. Antennas Propag. 56(5), 1420–1427 (2008)CrossRefGoogle Scholar
  4. 4.
    Qiu, R.C., Zhou, C., Liu, Q.: Physics-based pulse distortion for ultra-wideband signals. IEEE Trans. Veh. Technol. 54(5), 1546–1555 (2005)CrossRefGoogle Scholar
  5. 5.
    Chen, Z., Yao, R., Guo, Z.: The characteristics of UWB signal transmitting through a lossy dielectric slab. In: Proc. IEEE 60th Veh. Technol. Conf., VTC 2004-Fall, Los Angeles, CA, USA., vol. 1, pp. 134–138 (2004)Google Scholar
  6. 6.
    Yang, W., Qinyu, Z., Naitong, Z., Peipei, C.: Transmission characteristics of ultra-wide band impulse signals. In: Proc. IEEE Int. Conf. Wireless Communications, Networking and Mobile Computing, Shanghai, pp. 550–553 (2007)Google Scholar
  7. 7.
    Yang, W., Naitong, Z., Qinyu, Z., Zhongzhao, Z.: Simplified calculation of UWB signal transmitting through a finitely conducting slab. J. Syst. Eng. Electron. 19(6), 1070–1075 (2008)CrossRefGoogle Scholar
  8. 8.
    Karousos, A., Koutitas, G., Tzaras, C.: Transmission and reflection coefficients in time-domain for a dielectric slab for UWB signals. In: Proc. IEEE Veh. Technol. Conf., Singapore, pp. 455–458 (2008)Google Scholar
  9. 9.
    Brigham, E.O.: The Fast Fourier transform and Its Applications. Prentice-Hall, Englewood Cliffs (1988)Google Scholar
  10. 10.
    Sevgi, L.: Numerical Fourier transforms: DFT and FFT. IEEE Antennas Propag. Mag. 49(3), 238–243 (2007)CrossRefGoogle Scholar
  11. 11.
    Balanis, C.A.: Advanced engineering electromagnetic. Wiley, New York (1989)Google Scholar
  12. 12.
    Tewari, P., Soni, S.: Time-domain solution for transmitted field through low-loss dielectric obstacles in a microcellular and indoor scenario for UWB signals. IEEE Trans. Veh. Technol. (2013) (under review)Google Scholar
  13. 13.
    Barnes, P.R., Tesche, F.M.: On the direct calculation of a transient plane wave reflected from a finitely conducting half space. IEEE Trans. Electromagn. Compat. 33(2), 90–96 (1991)CrossRefGoogle Scholar
  14. 14.
    Tewari, P., Soni, S.: A comparison between transmitted and diffracted field in a microcellular scenario for UWB signals. In: Proc. IEEE Asia-Pacific Conf. Antennas Propag., Singapore, pp. 221–222 (2012)Google Scholar
  15. 15.
    Muqaibel, A., Safaai-Jazi, A., Bayram, A., Attiya, A.M., Riad, S.M.: Ultrawideband through-the-wall propagation. IEE Proc.-Microw. Antennas Propag. 152(6), 581–588 (2005)CrossRefGoogle Scholar
  16. 16.
    Jing, M., Qin-Yu, Z., Nai-Tong, Z.: Impact of IR-UWB waveform distortion on NLOS localization system. In: ICUWB 2009, pp. 123–128 (2009)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sanjay Soni
    • 1
  • Bajrang Bansal
    • 1
  • Ram Shringar Rao
    • 2
  1. 1.Delhi Technological UniversityDelhiIndia
  2. 2.Ambedkar Institute of Advanced Communication Technologies and ResearchDelhiIndia

Personalised recommendations