Cognitive Radio: A Non-parametric Approach by Approximating Signal Plus Noise Distribution by Kaplansky Distributions in the Context of Spectrum Hole Search

  • Srijibendu Bagchi
  • Mahua Rakshit
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 28)


Cognitive Radio has been acknowledged to be the ultimate solution to meet the huge spectrum demand due to various state-of-the-art communication technologies. It exploits the underutilized frequency band of the legacy users for the unlicensed users opportunistically. This requires a sensible spectrum sensing technique, generally performed by binary hypotheses testing. Noise and signal plus noise distributions are important in this context. These are assumed to be Gaussian in the suboptimal energy detection technique whereas these assumptions may not be validated by practical data. In this paper, the signal plus noise distribution is approximated by four distributions, known as Kaplansky distributions that closely resemble with Gaussian distribution. Testing of hypothesis is performed by non-parametric Kolmogorov Smirnov test and power of the test is calculated for a specific false alarm probability. Numerical results are provided in support of our proposition.


Cognitive Radio Kaplansky distributions non-parametric Kolmogorov Smirnov test power of test false alarm probability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Federal Communications Commission. In: the Matter of Facilitating Opportunities for Flexible, Efficient and Reliable Spectrum Use Employing Cognitive Radio Technologies. ET Docket No.03-108 (2003)Google Scholar
  2. 2.
    Haykin, S.: Cognitive Radio: Brain-empowered wireless communications. IEEE J. Selected Areas in Communications 23(2), 201–220 (2005)CrossRefGoogle Scholar
  3. 3.
    Arslan, H., Yücek, T.: Spectrum Sensing for Cognitive Radio Applications. Cognitive Radio, Software Defined Radio, and Adaptive Wireless Systems, 263–289 (2007)Google Scholar
  4. 4.
    Wang, J., Ghosh, M., Challapali, K.: Emerging Cognitive Radio Applications: A Survey. IEEE Communications Magazine 49(3), 74–81 (2011)CrossRefGoogle Scholar
  5. 5.
    Akyildiz, I.F., Lee, W.Y., Vuran, M.C., Mohanty, S.: NeXt generation/dynamic spectrum access/cognitiveradio wireless networks: A survey. Computer Networks 50, 2127–2159 (2006)CrossRefMATHGoogle Scholar
  6. 6.
    Fitch, M., Nekovee, M., Kawade, S., Briggs, K., MacKenzie, R.: Wireless Service Provision in TV White Space with Cognitive Radio Technology: A Telecom Operator’s Perspective and Experience. IEEE Communications Magazine 49(3), 64–73 (2011)CrossRefGoogle Scholar
  7. 7.
    Tabakovic, Z., Grgicand, S., Grgic, M.: Dynamic Spectrum Access in Cognitive Radio. In: 51st International Symposium ELMAR, pp. 245–248 (2009)Google Scholar
  8. 8.
    Geirhofer, S., Tong, L., Sadler, B.M.: Dynamic Spectrum Access in theTime Domain: Modeling and Exploiting White Space. IEEE Communications Magazine 45(5), 66–72 (2007)CrossRefGoogle Scholar
  9. 9.
    Shin, K.G., Kim, H., Min, A.W., Kumar, A.: Cognitive Radios for Dynamic SpectrumAccess: From Concept to Reality. IEEE Wireless Communications 17(6), 64–74 (2010)CrossRefGoogle Scholar
  10. 10.
    Ghesami, A., Sousa, E.S.: Spectrum Sensing in Cognitive Radio Networks: Requirements, Challenges and Design Trade-offs. IEEE Communications Magazine 46(4), 32–39 (2008)CrossRefGoogle Scholar
  11. 11.
    Chen, K.C., Prasad, R.: Cognitive Radio Networks. John Wiley & Sons. Ltd. (2009)Google Scholar
  12. 12.
    Liang, Y.C., Zeng, Y., Peh, E.C.Y., Hoang, A.T.: Sensing-Throughput Tradeoff for Cognitive Radio Networks. IEEE Transactions on Wireless Communications 7(4), 1326–1336 (2008)CrossRefGoogle Scholar
  13. 13.
    Tandra, R., Sahai, A.: SNR Walls for Signal Detection. IEEE Journal of Selected Topics in Signal Processing 2(1), 4–17 (2008)CrossRefGoogle Scholar
  14. 14.
    Tandra, R., Sahai, A.: Fundamental Limits on Detection in Low SNR under Noise Uncertainty. In: International Conference on Wireless Networks, Communication and Mobile Computing (2005)Google Scholar
  15. 15.
    Wang, H., Yang, E., Zhao, Z., Zhang, W.: Spectrum Sensing in Cognitive Radio Using Goodness of Fit Testing. IEEE Transactions on Wireless Communications 8(11), 5427–5430 (2009)CrossRefGoogle Scholar
  16. 16.
    Kaplansky, I.: A common error concerning kurtosis. Journal of American Statistical Association 40 (1945)Google Scholar
  17. 17.
    Kaplansky, I.: The asymptotic distribution of runs of consecutive elements. Annals of Mathematical Statistics 16, 200–203 (1945)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kendall, M.G., Stuart, A.: The Advanced Theory of Statistics. Charles Griffin & Company Limited (1961)Google Scholar
  19. 19.
    Gibbons, J.D.: Nonparametric Statistical Inference. McGraw-Hill (1971)Google Scholar
  20. 20.
    Lilliefors, H.W.: On the Kolmogorov-Smirnov test for Normality with Mean and Variance unknown. Journal of American Statistical Association 62(318), 399–402 (1967)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.RCC Institute of Information TechnologyKolkataIndia

Personalised recommendations