Implementation of Symmetric Functions Using Quantum Dot Cellular Automata

  • Subhashree Basu
  • Debesh K. Das
  • Subarna Bhattacharjee
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 28)


VLSI technology has made possible the integration of massive number of components into a single chip with the minimum power dissipation. But concerned by the wall that Moore’s law is expected to hit in the next decade, the integrated circuit community is turning to emerging nano-technologies for continued device improvements. Quantum dot cellular automata(QCA) is a technology which has the potential of faster speed, smaller size and minimum power consumption compared to transistor –based technology. In quantum dot cellular automata, the basic elements are simple cells. Each quantum cell contains two electrons which interact via Coulomb forces with neighboring cells. The charge distribution in each cell tends to align along one of two perpendicular axes, which allows the encoding of binary information using the state of the cell. These cells are used as building blocks to construct gates and wires. This paper utilizes these unique features of QCA to simulate symmetric functions. A general equation for the minimum number of gates required to an arbitrary number of input variables causing synthesis of symmetric function is achieved. Finally a general expression for the number of gates in benchmark circuits is also deduced. It provides significant reduction in hardware cost and switching delay compared to other existing techniques.


Quantum dot cellular automata symmetric functions Coulomb force 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    JaJa, Wu, S.M.: A new approach to realize partially symmetric functions. Tech. Rep. SRCTR86-54, Dept. EE, University of Maryland (1986)Google Scholar
  2. 2.
    Lent, C.S., Taugaw, P.D., Porod, W., Berstein, G.H.: Quantum Cellular Automata. Nanotechnology 4(1), 49–57 (1993)CrossRefGoogle Scholar
  3. 3.
    Picton, P.: Modified Fredkin gates in logic design. Microelectronics Journal 25, 437–441 (1994)CrossRefGoogle Scholar
  4. 4.
    Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Sinder, G.L.: Realization of a Functional Cell for Quantum Dot Cellular Automata. Science 277(5328), 928–930 (1997) CrossRefGoogle Scholar
  5. 5.
    Lent, C.S., Taugaw, P.D.: A Device Architecture for Computing with Quantum Dots. Proceedings IEEE 85(4), 541–557 (1997)CrossRefGoogle Scholar
  6. 6.
    Amlani, I., Orlov, A.O., Toth, G., Lent, C.S., Bernstein, G.H., Sinder, G.L.: Digital Logic Gate using Quantum Dot Cellular Automata. Science 284(5412), 289–291 (1999)CrossRefGoogle Scholar
  7. 7.
    Yanushekvich, S.N., Butler, J.T., Dueck, G.W., Shmerko, V.P.: Experiments on FPRM expressions for partially symmetric functions. In: Proc. of the 30th IEEE International Symposium on Multiple Valued logic, pp. 141–146 (2000)Google Scholar
  8. 8.
    Perkowski, M., Kerntopf, P., Buller, A., Chrzanowska Jeske, M., Mishchenko, A., Song, X., AlRabadi, A., Jo Zwiak, L., Coppola, A., Massey, B.: Regularity and symmetry as a base for efficient realization of reversible logic circuits. In: IWLS, pp. 245–252 (2001)Google Scholar
  9. 9.
    Perkowski, M., Kerntopf, P., Buller, A., ChrzanowskaJeske, M., Mishchenko, A., Song, X., AlRabadi, A., Jo Zwiak, L., Coppola, A., Massey, B.: Regular realization of symmetric functions using reversible logic. In: EUROMICRO Symp. on Digital Systems Design, pp. 245–252 (2001)Google Scholar
  10. 10.
    Lieberman, M., Chellamma, S., Varughese, B., Wang, Y., Lent, C.S., Bernstein, G.H., Snider, G.L., Peiris, F.: Quantum Dot Cellular Automata at a Molecular Scale. Annals of the New York Academy of Sciences 960, 225–239 (2002)CrossRefGoogle Scholar
  11. 11.
    Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A Method of Majority Logic Reduction for Quantum Cellular Automata. IEEE Trans. on Nanotechnology 3(4), 443–450 (2004)CrossRefGoogle Scholar
  12. 12.
    Walus, K., Schulhof, G., Jullien, G.A., Zhang, R., Wang, W.: Circuit Design Based on Majority Gates for Application with Quantum Dot Cellular Automata. IEEE Trans. Signals, Systems and Computers 2, 1354–1357 (2004)Google Scholar
  13. 13.
    Rahaman, H., Das, D.K., Bhattacharya, B.B.: Implementing Symmetric Functions with Hierarchical Modules for Stuck-At and Path-Delay Fault Testability. Journal of Electronic Testing 22(2), 125–142 (2006)CrossRefGoogle Scholar
  14. 14.
    Momenzadeh, M., Tahoori, M.B., Huang, J., Lombardi, F.: Characterization, Test and Logic Synthesis of AND-ORINVERTER (AOI) Gate Design for QCA Implementation. IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems 24, 1881–1893 (2005)CrossRefGoogle Scholar
  15. 15.
    Townsend, W.J., Abraham, J.A.: Complex Gate Implementations for Quantum Dot Cellular Automata. In: 4th IEEE Conference on Nanotechnology, pp. 625–627 (2004)Google Scholar
  16. 16.
    Rahaman, H., Sikdar, B.K., Das, D.K.: Synthesis of Symmetric Boolean Functions Using Quantum Cellular Automata. In: International Conference on Design & Test of Integrated Systems in Nanoscale Technology (DTIS 2006), Tunis, Tunisia, pp. 119–124 (2006)Google Scholar
  17. 17.
    Xu, Z.Y., Fenga, M.W., Zhang, M.: Universal Quantum Computation With Quantum-Dot Cellular Automata in Decoherence-Free Subspace. Quantum Information and Computation (2008)Google Scholar
  18. 18.
    Azghadi, M.R., Kavehei, O., Navi, K.: A Novel Design for Quantum-dot Cellular Automata Cells and Full AddersGoogle Scholar
  19. 19.
    Maslov, D.: Efficient reversible and quantum implementations of symmetric Boolean functions. Circuits, Devices and Systems, IEEE Proc. 153(5), 467–472 (2006)CrossRefGoogle Scholar
  20. 20.
    Cho, H.: Adder Designs and Analyses for Quantum-Dot Cellular Automata. IEEE Transactions on Nanotechnology 6(3) (2007)Google Scholar
  21. 21.
    Keren, O., Levin, I., Stankovic, S.R.: Use of gray decoding for implementation of symmetric functions. In: International Conference on VLSI, pp. 25–30 (2007)Google Scholar
  22. 22.
    Lauradoux, C., Videau, M.: Matriochka symmetric Boolean functions. In: IEEE ISIT, pp. 1631–1635 (2008)Google Scholar
  23. 23.
    Géza, T., Lent, C.S.: Quantum computing with quantum-dot cellular automata. Physical Review A 63, 052315Google Scholar
  24. 24.
    Bhattacharjee, P.K.: Use of Symmetric Functions Designed by QCA Gates for Next Generation IC. International Journal of Computer Theory and Engineering 2, 1793–8201 (2010)Google Scholar
  25. 25.
    Jagarlamudi, H.S., Saha, M., Jagarlamudi, P.K.: Quantum Dot Cellular Automata Based Effective Design of Combinational and Sequential Logical Structures. World Academy of Science, Engineering and Technology 60 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Subhashree Basu
    • 1
  • Debesh K. Das
    • 2
  • Subarna Bhattacharjee
    • 1
  1. 1.Computer Science and Engineering DepartmentSt. Thomas College of Engineering and TechnologyKolkataIndia
  2. 2.Computer Science and Engineering DepartmentJadavpur UniversityKolkataIndia

Personalised recommendations