Skip to main content

On the Application of Computational Diffie-Hellman Problem to ID-Based Signatures from Pairings on Elliptic Curves

  • Conference paper
Advanced Computing, Networking and Informatics- Volume 2

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 28))

  • 1829 Accesses

Abstract

The paper presents the application of the Computational Diffie-Hellman problem to ID-based signatures with pairings on elliptic curves in the random oracle model. It focusses on the security of the scheme.It also understands the fundamentals of provable security as applied in cryptography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  2. Boneh, D., Franklin, M.: Identity based encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Boneh, D., Franklin, M.: Identity based encryption from the Weil Pairing, http://crypto.stanford.edu/dabo/abstracts/ibe.html

  4. Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: 2000 Symposium on Cryptography and Information Security, pp. 26–28 (2000)

    Google Scholar 

  5. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied Cryptography. CRC Press (1996)

    Google Scholar 

  6. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Galbraith, S.D.: Supersingular curves in cryptography. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 495–513. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  8. Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Computing 17(2), 281–308 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bellare, M., Rogaway, P.: Random Oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of First ACM Conference on Computer and Communications Security, pp. 62–73 (1993)

    Google Scholar 

  10. Paterson, K.G.: ID-based Signatures from Pairings on Elliptic Curves. Electronics Letters 38(18), 1025–1026 (2002)

    Article  Google Scholar 

  11. Raju, G.V.S., Akbani, R.: Elliptic Curve Cryptosystems and its Applications. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1540–1543 (2003)

    Google Scholar 

  12. Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2002)

    Google Scholar 

  13. Galindo, D., Garcia, F.D.: A schnorr-like lightweight identity-based signature scheme. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 135–148. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Herranz, J.: Deterministic identity-based signatures for Partial Aggregation. The Computer Journal 49(3), 322–330 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaathi Ramesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ramesh, S. (2014). On the Application of Computational Diffie-Hellman Problem to ID-Based Signatures from Pairings on Elliptic Curves. In: Kumar Kundu, M., Mohapatra, D., Konar, A., Chakraborty, A. (eds) Advanced Computing, Networking and Informatics- Volume 2. Smart Innovation, Systems and Technologies, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-319-07350-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07350-7_37

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07349-1

  • Online ISBN: 978-3-319-07350-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics