Advertisement

On the Application of Computational Diffie-Hellman Problem to ID-Based Signatures from Pairings on Elliptic Curves

  • Swaathi Ramesh
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 28)

Abstract

The paper presents the application of the Computational Diffie-Hellman problem to ID-based signatures with pairings on elliptic curves in the random oracle model. It focusses on the security of the scheme.It also understands the fundamentals of provable security as applied in cryptography.

Keywords

Provable Security Identity-based signature schemes Weil Pairing Tate Pairing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Franklin, M.: Identity based encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Boneh, D., Franklin, M.: Identity based encryption from the Weil Pairing, http://crypto.stanford.edu/dabo/abstracts/ibe.html
  4. 4.
    Sakai, R., Ohgishi, K., Kasahara, M.: Cryptosystems based on pairing. In: 2000 Symposium on Cryptography and Information Security, pp. 26–28 (2000)Google Scholar
  5. 5.
    Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of applied Cryptography. CRC Press (1996)Google Scholar
  6. 6.
    Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Galbraith, S.D.: Supersingular curves in cryptography. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 495–513. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Goldwasser, S., Micali, S., Rivest, R.: A digital signature scheme secure against adaptive chosen-message attacks. SIAM J. Computing 17(2), 281–308 (1988)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bellare, M., Rogaway, P.: Random Oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of First ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  10. 10.
    Paterson, K.G.: ID-based Signatures from Pairings on Elliptic Curves. Electronics Letters 38(18), 1025–1026 (2002)CrossRefGoogle Scholar
  11. 11.
    Raju, G.V.S., Akbani, R.: Elliptic Curve Cryptosystems and its Applications. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 2, pp. 1540–1543 (2003)Google Scholar
  12. 12.
    Cha, J.C., Cheon, J.H.: An Identity-Based Signature from Gap Diffie-Hellman Groups. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 18–30. Springer, Heidelberg (2002)Google Scholar
  13. 13.
    Galindo, D., Garcia, F.D.: A schnorr-like lightweight identity-based signature scheme. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 135–148. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Herranz, J.: Deterministic identity-based signatures for Partial Aggregation. The Computer Journal 49(3), 322–330 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.National Institute of TechnologyTiruchirapalliIndia

Personalised recommendations