Ultra High Bit-rate Fiber Optic Hybrid (WDM and TDM) Communication System Design and Simulation

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 28)

Abstract

An ultra-high bit-rate fiber optic hybrid system is proposed in this work. The proposed system utilizes the advantages of both wavelength division and time division multiplexing techniques. The performance has been investigated for various advanced data formats such as carrier-suppressed return-to-zero (CSRZ), duo-binary return-to-zero (DRZ) and modified duo-binary return-to-zero (MDRZ). MDRZ format is proved to be the best among all. The proposed system performance has been investigated at various bit rate of 10Gbps, 40Gbps and 100Gbps, for over the selected transmission lengths of 1650 Km, 400 Km, 100 Km respectively.

Keywords

Hybrid fiber optic system WDM TDM MDRZ DRZ CSRZ 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Memon, M.I., et al.: Generation and Modulation of Tunable mm-Wave Optical Signals Using Semiconductor Ring Laser. IEEE Photonics Technology Letters 21(11), 733–735 (2009)CrossRefGoogle Scholar
  2. 2.
    Murakami, M., Matsuda, T., Maeda, H., Imai, T.: Long-Haul WDM Transmission Using Higher Order Fiber Dispersion Management. IEEE Journal of Lightwave Technology 18(9), 898–900 (2000)CrossRefGoogle Scholar
  3. 3.
    Bock, C., Prat, J., Walker, S.D.: Hybrid WDM/TDM PON Using the AWG FSR and Featuring Centralized Light Generation and Dynamic Bandwidth Allocation. IEEE Journal of Lightwave Technology 23(12), 3981–3988 (2005)CrossRefGoogle Scholar
  4. 4.
    Oh, J.M., Koo, S.G., Lee, D., Park, S.-J.: Enhancement of the Performance of a Reflective SOA-Based Hybrid WDM/TDM PON System With a Remotely Pumped Erbium-Doped Fiber Amplifier. IEEE Journal of Lightwave Technology 26(1), 144–149 (2008)CrossRefGoogle Scholar
  5. 5.
    Hayee, M.I., Willner, A.E.: NRZ Versus RZ in 10–40-Gb/s Dispersion-Managed WDM Transmission Systems. IEEE Photonics Technology Letters 11(8), 991–993 (1999)CrossRefGoogle Scholar
  6. 6.
    Bosco, G., Carena, A., Curri, V., Gaudino, R., Poggiolini, P.: On the Use of NRZ, RZ, and CSRZ Modulation at 40 Gb/s With Narrow DWDM Channel Spacing. IEEE Journal of Lightwave Technology 20(9), 1694–1704 (2002)CrossRefGoogle Scholar
  7. 7.
    Hodžic´, P., Konrad, B., Petermann, K.: Alternative Modulation Formats in N X 40 Gb/s WDM Standard Fiber RZ-Transmission Systems. IEEE Journal of Lightwave Technology 20(4), 598–607 (2002)CrossRefGoogle Scholar
  8. 8.
    Kani, J.-I.: Enabling Technologies for Future Scalable and Flexible WDM-PON and WDM/TDM-PON Systems. IEEE Journal of Selected Topics in Quantum Electronics 16(5), 1290–1297 (2010)CrossRefGoogle Scholar
  9. 9.
    An, F.T., Kim, K.S., Gutierrez, D., Yam, S., Hu, E(S.-T.), Shrikhande, K., Kazovsky, L.G.: SUCCESS: A Next-Generation Hybrid WDM/TDM Optical Access Network Architecture. IEEE Journal of Lightwave Technology 22(11), 2557–2569 (2004)CrossRefGoogle Scholar
  10. 10.
    Winzer, P.J., Essiambre, R.-J.: Advanced Modulation Formats for High-Capacity Optical Transport Networks. IEEE Journal of Lightwave Technology 24(12), 4711–4728 (2006)CrossRefGoogle Scholar
  11. 11.
    Cheng, K.S., Conradi, J.: Reduction of pulse-to-pulse interaction using alternative RZ formats in 40-Gb/s systems. IEEE Photonics Technology Letters 14(1), 98–100 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electronics and TelecommunicationSilicon Institute of TechnologyBhubaneswarIndia
  2. 2.School of Electrical SciencesIndian Institute of TechnologyBhubaneswarIndia
  3. 3.Department of Electronics and TelecommunicationInternational Institute of Information TechnologyBhubaneswarIndia

Personalised recommendations