Abstract
Reactive oxygen species induce oxidative modification of critical macromolecules. Oxygen derived free radicals may act as potential cytotoxic intermediates inducing inflammatory and degenerative processes, or as signal messengers for the regulation of gene expression. This dual effect mainly depends on the availability of free radicals in terms of concentration, as well as on the environmental characteristics in which they are produced. The formation of free radicals has been proposed to be the linking factor between certain metabolic disturbances and cancer. Circulating mononuclear cells of patients with high cholesterol levels, insulin resistance, metabolic syndrome or obesity present lower levels of antioxidant enzymes and increased concentrations of oxidative stress by-products such as isoprostanes or the DNA oxidized and highly mutagenic base 8-oxo-7,8-dihydro-2′-deoxyguanosine. Overweight or obese subjects also exhibit hormonal changes as a consequence of the increase of mass fat, and these hormonal alterations have been implicated in the alteration of different signal transduction mechanisms and in cell growth and differentiation. A significant correlation has been found between body mass index and cancer. The biological factors and molecular mechanisms implicated in obesity associated cancer susceptibility will be reviewed.
Keywords
- Cancer
- DNA damage
- Free radicals
- Obesity
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Sies H, Cadenas E. Oxidative stress: damage to intact cells and organs. Philos Trans R Soc Lond B Biol Sci. 1985;311:617–31.
Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford, UK: Oxford University Press; 2007.
Loft S, Danielson P, Löhr M, Jantzen K, Hemmingsen JG, Roursgaard M, et al. Urinary excretion of 8-oxo-7,8-dihydroguanine as biomarker of oxidative damage to DNA. Arch Biochem Biophys. 2012;518:142–50.
Barregard L, Møller P, Henriksen T, Mistry V, Koppen G, Rossner Jr P, et al. Human and methodological sources of variability in the measurement of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine. Antioxid Redox Signal. 2013;18:2377–91.
Oliva MR, Ripoll F, Muñiz P, Iradi A, Trullenque R, Valls V, et al. Genetic alterations and oxidative metabolism in sporadic colorectal tumors from a Spanish community. Mol Carcinogen. 1997;18:232–43.
Oltra AM, Carbonell F, Tormos C, Iradi A, Sáez GT. Antioxidant enzyme activities and the production of MDA and 8-oxo-dG in chronic lymphocytic leukemia. Free Rad Biol Med. 2001;30:1286–92.
Sánchez M, Torres JV, Tormos C, Iradi A, Muñiz P, Espinosa O, et al. Impairment of antioxidant enzymes, lipid peroxidation and 8-oxo-2′- deoxyguanosine in advanced epithelial ovarian carcinoma of a spanish community. Cancer Lett. 2006;233:28–35.
Collado R, Oliver I, Tormos C, Egea M, Miguel A, Cerdá C, et al. Early ROS-mediated DNA damage and oxidative stress biomarkers in monoclonal B lymphocytosis. Cancer Lett. 2012;317:144–9.
Abdilla N, Tormo MC, Fabia MJ, Chaves FJ, Sáez G, Redon J. Impact of the components of metabolic syndrome on oxidative stress and enzymatic antioxidant activity in essential hypertension. J Hum Hypertens. 2007;21:68–75.
Martinez-Hervas S, Fandos M, Real JT, Espinosa O, Chaves FJ, Sáez GT, et al. Insulin resistance and oxidative stress in familial combined hyperlipidemia. Atherosclerosis. 2008;199:384–9.
Fandos M, Corella D, Guillén M, Portloés O, Carrasco P, Iradi A, et al. Impact of cardiovascular risk factors on oxidative stress and DNA damage in a high risk Mediterranean population. Free Radic Res. 2009;43:1179–89.
Mitjavila MT, Fandos M, Salas-Salvadó J, Covas MI, Borrego S, Estruch R, et al. The Mediterranean diet improves the systemic lipid and DNA oxidative damage in metabolic syndrome individuals. A randomized, controlled trial. Clin Nutr. 2013;32:172–8.
López-Uriarte P, Nogués R, Saez G, Bulló M, Romeu M, Masana L. Effect of nut consumption on oxidative stress and the endothelial function in metabolic syndrome. Clin Nutr. 2010;29:373–80.
Real JT, Martínez-Hervás S, Tormos MC, Domenech E, Pallardó FV, Sáez-Tormo G, et al. Increased oxidative stress levels and normal antioxidant enzyme activity in circulating mononuclear cells from patients of familial hypercholesterolemia. Metabolism. 2010;59:293–8.
Kushino Y, Mori F, Kasai H, Inoue H, Iwai S, Miura K, et al. Misreading of DNA templates containing 8-hydroxy-deoxyguanosine at the modified base and at adjacent residues. Nature. 1987;327:77–9.
Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damage base 8-oxo-Dg. Nature. 1991;349:431–4.
Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, et al. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc Natl Acad Sci U S A. 1999;96:13300–5.
Lichtman MA. Obesity and the risk for a haematological malignancy: leukemia, lymphoma, or myeloma. Oncologist. 2010;15:1083–101.
Robert DL, Dive C, Renehan AF. Biological mechanisms linking obesity and cancer risk. New perspectives. Annu Rev Med. 2010;61:301–6.
Lobstein T, Frelut ML. Prevalence of overweight among children in Europe. Obes Rev. 2003;4:195–200.
Caballero B. The global epidemic of obesity: an overview. Epidemiol Rev. 2007;29:1–5.
Wang Y, Lobstein T. Worldwide trends in childhood overweight and obesity. Int J Pediatr Obes. 2006;1:11–25.
De Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85:660–7.
Sánchez-Cruz JJ, Jiménez-Moleón JJ, Fernández-Quesada F, Sánchez MJ. Prevalencia de obesidad infantil y juvenil en España en 2012. Rev Esp Cardiol. 2013;66:371–6.
Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults. 1999–2008. JAMA. 2010;303:235–41.
Demark-Wahnefried W, Platz EA, Ligibel JA, Blair CK, Courneya KS, Meyerhardt JA, et al. The role of obesity in cancer survival and recurrence. Cancer Epidemiol Biomarkers Prev. 2012;21:1244–59.
Haslam D. Obesity: a medical history. Obes Rev. 2007;8 Suppl 1:31–6.
Renehan AG, Tyson M, Egger M, Heller F, Swahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet. 2008;371:569–78.
Cao Y, Ma J. Body mass index, prostate cancer-specific mortality, and biochemical recurrence: a systematic review and meta-analysis. Cancer Prev Res. 2011;4:486–501.
Ewertz M, Jensen MB, Grunnarsdottir KA, Højris I, Jakobsen EH, Nielsen D, et al. Effect of obesity on prognosis after early-stage breast cancer. J Clin Oncol. 2011;29:25–31.
Sinicrope FA, Foster NR, Sargent DJ. Obesity is an independent prognostic variable in colon cancer survivors. Clin Cancer Res. 2010;16:1884–93.
Protani M, Coory M, Marin JH. Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res Treat. 2010;123:627–35.
Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–38.
Wholin KY, Carson K, Colditz GA. Obesity and cancer. Oncologist. 2010;15:556–65.
Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D. Cancer incidence and mortality in relation to body mass index in the million women study: cohort study. Brit Med J. 2007;335:1134–9.
Dalling JR, Malone KE, Doody DR, Johnson LG, Gralow JR, Porter PL. Relation of body mass index to tumor markers and survival among young women with invasive ductal breast carcinoma. Cancer. 2001;92:720–9.
De Pergola G, Silvestris F. Obesity as a major risk factor for cancer. J Obes. 2013;2013:291546.
Calle EE, Kaaks R. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer. 2004;4:579–91.
Hsing AW, Sakoda LC, Chua Jr S. Obesity, metabolic syndrome, and prostate cancer. Am J Clin Nutr. 2007;86:843–57.
Spindler SR. Rapid and reversible induction of the longevity, anticancer and genomic effects of caloric restriction. Mech Ageing Dev. 2005;126:960–6.
Pallavi R, Giorgio M, Pelicci PG. Insights into the beneficial effect of caloric/dietary restriction for a healthy and prolonged life. Front Physiol. 2012;3:1–10.
Heydari AR, Unnikrishnan A, Lucente LV, Richardson A. Caloric restriction and genomic stability. Nucleic Acids Res. 2007;35:7485–96.
McMillan JR, Sattar N, Lean M, McArdle CS. Obesity and cancer. Brit Med J. 2006;333:1109–11.
Lagunova Z, Projnicu AC, Grant WB, Bruland O, Moan JE. Obesity and increased risk of cancer: dose decrease of serum 25-hydroxyvitamin D level with increasing body mass index explain some of the association? Mol Nutr Food Res. 2010;54:1127–33.
McKeown-Eyssen G. Epidemiology of colorectal cancer revisited: are serum triglycerides and/or plasma glucose associated with risk? Cancer Epidemiol Biomarkers Prev. 1994;3:687–95.
Giovannucci E. Insulin and colon cancer. Cancer Causes Control. 1995;6:164–79.
Frystyk J. Free insulin-like growth factors-measurements and relationships to growth hormone secretion and glucose homeostasis. Growth Horm IGF Res. 2004;14:337–75.
Becker S, Lossus L, Kaaks R. Obesity related hyperinsulinaemia and hyperglycaemia and cancer development. Arch Physiol Biochem. 2009;115:86–96.
Pisani P. Hyper-insulinaemia and cancer, meta-analyses of epidemiological studies. Arch Physiol Biochem. 2008;114:63–70.
Cust AE, Allen NE, Rinaldi S, Dossus L, Friedenreich C, Olsen A, et al. Serum levels of C-peptide, IGFBP-1 and IGFBP-2 and endometrial cancer risk: results from the European prospective investigation into cancer and nutrition. Int J Cancer. 2007;120:2656–64.
Verheus M, Peeters PH, Rinaldi S, Dossus L, Biessy C, Olsen A, et al. Serum C-peptide levels and breast cancer risk: results from the European prospective investigation into cancer and nutrition (EPIC). Int J Cancer. 2006;119:659–67.
Renehan AG, Frystyk J, Flyvbjerg A. Obesity and cancer risk: the role of the insulin-IGF axis. Trends Endocrinol Metab. 2006;17:328–36.
Richart W, Fernandez-Real JM. No decrease in free IGF-I with increasing insulin in obesity-related insulin resistance. Obes Res. 2001;9:631–6.
Pollak MN, Schernhammer ES, Hankinson SE. Insulin-like growth factor and neoplasia. Nat Rev Cancer. 2004;4:505–18.
Wu Y, Yakar S, Zhao L, Hennighausen L, LeRoith D. Circulating insulin-like growth factor-I levels regulate colon cancer growth and metastasis. Cancer Res. 2002;62:1030–5.
Heron-Milhavet L, LeRoith D. Insulin-like growth factor I induces MDM-dependent degradation of p53 via the p38 MAPK pathway in response to DNA damage. J Biol Chem. 2002;18:15600–6.
Canonici A, Steelant W, Rigot V, Khomitch-Baud A, Boutaghou-Cherid H, Bruyneel E. Insulin-like growth factor-I receptor, E-cadherin and alpha v integrin form a dynamic complex under the control of alpha-catenin. Int J Cancer. 2008;122:572–82.
Bray GA. The underlying basis for obesity: relationship to cancer. J Nutr. 2002;132:3451s–5.
Rose DP, Komninou D, Stephenson GD. Obesity, adipocytokines, and insulin resistance in breast cancer. Obes Rev. 2004;5:153–65.
Hardwick JC, Van Den Brink GR, Offerhaus GJ, Van Deventer SJ, Peppelenbosch MP. Leptin is a growth factor for colonic epithelial cells. Gastroenterology. 2001;121:79–90.
Dieudonne MN, Machinal-Quelin F, Serazin-Leroy V, Leneveu MC, Pecquery R, Giudicelli Y. Leptin mediates a proliferative response in human MCF7 breast cancer cells. Biochem Biophys Res Commun. 2002;293:622–8.
Barb D, Williams CJ, Neuwirth AK, Mantzoros CS. Adiponectin in relation to malignancies: a review of existing basic research and clinical evidence. Am J Clin Nutr. 2007;86:s858–66.
Arcidiacono B, Iiritano S, Nocera A, Possidente K, Nevolo MT, Ventura V, et al. Insulin resistance and cancer risk: an overview of the pathogenetic mechanisms. Exp Diabetes Res. 2012;2012:789174.
Petridou E, Mantzoros C, Dessypris N, Koukoulomatis P, Addy C, Voulgaris Z, et al. Plasma adiponectin concentrations in relation to endometrial cancer: a case-control study in Greece. J Clin Endocrinol Metab. 2003;88:993–7.
Miyoshi Y, Funahashi T, Kihara S, Taguchi T, Tamaki Y, Matsuzawa Y, et al. Association of serum adiponectin levels with breast cancer risk. Clin Cancer Res. 2003;9:5699–704.
Goktas S, Yilmaz MI, Caglar K, Sonmez A, Kilic S, Bedir S, et al. Prostate cancer and adiponectin. Urology. 2005;65:1168–72.
Wei EK, Giovannucci E, Fuchs CS, Willett WC, Mantzoros CS. Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst. 2005;97:1688–94.
Dieudonne MN, Bussiere M, Dos Santos E, Leneveu MC, Giudicelli Y, Pecquery R. Adiponectin mediates antiproliferative and apoptotic response in human MCF7 breast cancer cells. Boichem Biophys Res Commun. 2006;345:271–8.
Bråkenhielm E, Veitonmäki N, Cao R, Kihara S, Matsuzawa Y, Zhivotovsky B, et al. Adiponectin induced antiangiogenic and antitumor activity involve caspase-mediated endothelial cell apoptosis. Proc Natl Acad Sci U S A. 2004;101:2476–81.
Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative-stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752–61.
Rindler PM, Plafker SM, Szweda LI, Kinter M. High dietary fat selectively increases catalase expression within cardiac mitochondria. J Biol Chem. 2013;288:1979–90.
Dröse S, Brandt U. Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol. 2012;748:145–69.
Diaz-Marco MT, Moscat J. The atypical PKCs in inflammation: NFkB and beyond. Immunol Rev. 2012;246:154–67.
Patel C, Ghanim H, Ravishankar S, Sia CL, Viswanathan P, Mohanty P, et al. Prolonged reactive oxygen species generation and nuclear factor-kappaB activation after a high-fat, high-carbohydrate meal in the obese. J Clin Endocrinol Metabol. 2007;92:4476–9.
Bubici C, Papa S, Dean K, Franzoso G. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene. 2006;25:6731–48.
Surmi BK, Hasty AH. The role of chemokines in recruitment of immune cells to the artery wall and adipose tissue. Vasc Pharmacol. 2010;52:27–36.
Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313–22.
Shin S, Wakabayashi J, Yates MS, Wakabayashi N, Dolan PM, Aja S, et al. Role of Nrf2 in prevention of high-fat diet-induced obesity by synthetic triterpenoid CDDO-imidazolide. Eur J Pharmacol. 2009;620:138–44.
Brown LA, Kerr CJ, Whiting P, Finer N, McEneny J, Ashton T. Oxidant stress in healthy normal-weight, overweight, and obese individuals. Obesity. 2009;17:460–6.
Savini I, Catani MV, Evangelista D, Gasperi V, Avigliano L. Obesity-associated oxidative stress: strategies finalized to improve redox state. Int J Mol Sci. 2013;14:10947–538.
Ferretti G, Bacchetti T, Masciangelo S, Bicchiega V. HDL-paraoxonase and membrane lipid peroxidation: a comparison between healthy and obese subjects. Obesity. 2010;18:1079–84.
Krzystek-Korpacka M, Patryn E, Hotowy K, Czapińska E, Majda J, Kustrzeba-Wójcicka I, et al. Paraoxonase (PON)-1 activity in overweight and obese children and adolescents: association with obesity-related inflammation and oxidative stress. Adv Clin Exp Med. 2013;22:229–36.
Ferré N, Feliu A, García-Heredia A, Marsillach J, París N, Zaragoza-Jordana M, et al. Impaired paraoxonase-1 status in obese children. Relationships with insulin resistance and metabolic syndrome. Clin Biochem. 2013;46:1830–6.
Canoy D, Wareham N, Welch A, Bingham S, Luben R, Day N, Khaw KT. Plasma ascorbic acid concentrations and fat distribution in 19,068 British men and women in the European prospective investigation into cancer and nutrition Norfolk cohort study. Am J Clin Nutr. 2005;82:1203–9.
D’Archivio M, Annuzzi G, Varì R, Filesi C, Giacco R, Scazzocchio B, et al. Predominant role of obesity/insulin resistance in oxidative development. Eur J Clin Invest. 2012;42:70–8.
De Tursi-Ríspoli L, Vázquez-Tarragón A, Vázquez-Prado A, Sáez-Tormo G, Alí-Mahmoud A, Gumbau-Puchol V. Estrés oxidativo; estudio comparativo entre un grupo de población normal y un grupo de población obesa mórbida. Nutr Hosp. 2013;28:671–5.
De Tursi-Ríspoli L, Vázquez-Tarragón A, Vázquez-Prado A, Sáez-Tormo G, Mahmoud AL, Bruna-Esteban M, et al. Relationship of oxidative stress and weight loss achieved in morbid obese patients by means of bariatric surgery using the duodenal switch technique. Nutr Hosp. 2013;28:1085–92.
Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005;111:1448–54.
Il’yasova D, Wang F, Spasojevic I, Base K, D’Agostino Jr RB, Wagenknecht LE. Urinary F2-isoprostanes, obesity, and weight gain in the IRAS cohort. Obesity (Silver Spring). 2012;20:1915–21.
Kanaya AM, Wassel CL, Stoddard PJ, Harris TB, Cummings SR, Kritchevsky SB, et al. F2-isoprostanes and adiposity in older adults. Obesity (Silver Spring). 2011;19:861–7.
Zhang H, Xie C, Spencer HJ, Zuo C, Higuchi M, Ranganathan G, et al. Obesity and hepatosteatosis in mice with enhanced oxidative DNA damage processing in mitochondria. Am J Pathol. 2011;178:1715–27.
Sampath H, Vartanian V, Rollins MR, Sakumi K, Nakabeppu Y, Lloyd RS. 8-Oxoguanine DNA glycosilase (OGG1) deficiency increases susceptibility to obese and metabolic dysfunction. PLoS One. 2012;7:e51697.
García-Heredia A, Kensicki E, Mohney RP, Rull A, Triguero I, Marsillach J, et al. Paraoxonase-1 deficiency is associated with severe liver steatosis in mice fed a high-fat high-cholesterol diet. A metabolomic approach. J Proteome Res. 2013;12:1946–55.
Milić M, Kišan M, Rogulj D, Radman M, Lovrenčić MV, Konjevoda P, et al. Level of primary DNA damage in the early stage of metabolic syndrome. Mutat Res. 2013;758:1–5.
Anderson D, Yu TW, Wright J, Ioannides C. An explanation of DNA strand breakage in the comet assay and antioxidant capacity in diabetic patients. Mutat Res. 1998;398:151–61.
Chavarro JE, Toth TL, Wright DL, Meeker JD, Hauser R. Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic. Fertil Steril. 2010;93:2222–31.
Dupont C, Faure C, Sermondade N, Boubaya M, Eustache F, Clément P, et al. Obesity leads to higher risk of sperm DNA damage in infertile patients. Asian J Androl. 2013;15:622–5.
Acknowledgements
GTS thanks grants from Conselleria de Sanitat de la Generalitat de València and Instituto de Salud Carlos III: ACOM/2012/238; PI10/00802; PI13/01848; CIBEROBN 12/03/30016
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Cerdá, C. et al. (2014). Oxidative Stress and DNA Damage in Obesity-Related Tumorigenesis. In: Camps, J. (eds) Oxidative Stress and Inflammation in Non-communicable Diseases - Molecular Mechanisms and Perspectives in Therapeutics. Advances in Experimental Medicine and Biology, vol 824. Springer, Cham. https://doi.org/10.1007/978-3-319-07320-0_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-07320-0_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07319-4
Online ISBN: 978-3-319-07320-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)