Skip to main content

Schwann Cells and Myelin in the Peripheral Nervous System

  • Chapter
  • First Online:
Biopsy Diagnosis of Peripheral Neuropathy

Abstract

Schwann cells (SCs) are derived from the neural crest and encircle all peripheral nerve axons. Functionally, two populations of Schwann cells can be identified, those producing myelin and those associated with unmyelinated axons. Because this distinction is fundamental to the appearance and physiology of SCs, the two types will be discussed separately. Schwann cells associated with unmyelinated fibers have been called Remak cells, but we will refer to them as nonmyelinating Schwann cells (NMSCs) because whether an SC produces myelin or not depends not on some critical and irreversible decision made in the process of differentiation, but on signals (likely neuregulin) originating from its axon and related to its caliber. Axonal neuregulin signals information about axon size to Schwann cells; hypomyelination and hypermyelination result from reduced and overexpression of neuregulin, respectively. Rarely, an unmyelinated axon develops one or more short myelinated internodes along its course, a phenomenon described particularly in aged animals. Schwann cell biology has been the subject of a series of reviews collected in a special issue of Glia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aguayo AJ, Epps J, Charron L, Bray GM (1976) Multipotentiality of Schwann cells in cross-anastomosed and grafted myelinated and unmyelinated nerves. Brain Res 104:1–20

    CAS  PubMed  Google Scholar 

  • Allt G (1969) Repair of segmental demyelination in peripheral nerves. Brain 92:639–646

    CAS  PubMed  Google Scholar 

  • Allt G (1983) The node of Ranvier in experimental allergic neuritis. An electron microscopic study. J Neurocytol 4:63–76

    Google Scholar 

  • Arnason BGW, Soliven B (1993) Acute inflammatory demyelinating polyneuropathy. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 3rd edn. W.B. Saunders, Philadelphia, pp 1437–1497

    Google Scholar 

  • Asbury AKB, Arnason G, Adams RD (1969) The inflammatory lesion in idiopathic polyneuritis. Medicine 48:173–215

    CAS  PubMed  Google Scholar 

  • Asbury AK, Johnson PC (1978) Pathology of peripheral nerve, vol 9, Major problems in pathology. WB Saunders, Philadelphia

    Google Scholar 

  • Aszodi A, Legate KR, Nakchbandi I et al (2006) What mouse mutants teach us about extracellular matrix function. Annu Rev Cell Dev Biol 22:591–621

    CAS  PubMed  Google Scholar 

  • Attia J, Tropak M, Johnson PW et al (1989) Modulated adhesion: a proposal for the role of myelin-associated glycoprotein in myelin wrapping. Clin Chem 35:717–720

    CAS  PubMed  Google Scholar 

  • Ayers MM, Anderson R (1975) Development of onion bulb neuropathy in the Trembler mouse. Acta Neuropathol 32:43–59

    CAS  PubMed  Google Scholar 

  • Babel J, Bischoff A, Spoendlin H (1970) Ultrastructure of the peripheral nervous system and sense organs. CV Mosby, St. Louis, p 48

    Google Scholar 

  • Ballin RH, Thomas PK (1969a) Changes at the nodes of Ranvier during wallerian degeneration: an electron microscope study. Acta Neuropathol 14:237–249

    CAS  PubMed  Google Scholar 

  • Ballin RH, Thomas PK (1969b) Electron microscope observations on demyelination and remyelination in experimental allergic neuritis. 2 Remyelination. J Neurol Sci 8:225–237

    CAS  PubMed  Google Scholar 

  • Banik NL (1992) Pathogenesis of myelin breakdown in demyelinating diseases: role of proteolytic enzymes. Crit Rev Neurobiol 6:257–271

    CAS  PubMed  Google Scholar 

  • Barohn RJ, Kissel JT, Warmolts JR et al (1989) Chronic inflammatory polyradiculoneuropathy. Clinical characteristics, course, and recommendations for diagnostic criteria. Arch Neurol 46:878–884

    CAS  PubMed  Google Scholar 

  • Behse F (1990) Morphometric studies on the human sural nerve. Acta Neurol Scand Suppl 132:1–38

    CAS  PubMed  Google Scholar 

  • Ben Jelloun-Dellagi S, Dellagi K, Burger D et al (1992) Childhood neuropathy with autoantibodies to myelin glycoprotein P0. Ann Neurol 32:700–702

    CAS  PubMed  Google Scholar 

  • Berthold CH, Rydmark M (1983) Electron microscopic serial section analysis of nodes of Ranvier in lumbosacral spinal roots of the cat: ultrastructural organization of nodal compartments in fibres of different sizes. J Neurocytol 12:475–505

    CAS  PubMed  Google Scholar 

  • Birchem R, Mithen FA, L’Empereur KM et al (1987) Ultrastructural effects of Guillaine-Barre serum in cultures containing only rat Schwann cells and dorsal root ganglion neurons. Brain Res 421:173–185

    CAS  PubMed  Google Scholar 

  • Birchmeier C, Nave K-A (2008) Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 56:1491–1497

    PubMed  Google Scholar 

  • Bleasel AF, Hawke SH, Pollard JD et al (1993) IgG monoclonal paraproteinemia and peripheral neuropathy. J Neurol Neurosurg Psychiatry 56:52–57

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brechenmacher C, Vital C, Deminiere C et al (1987) Guillaine-Barre syndrome: an ultrastructural study of peripheral nerve in 65 patients. Clin Neuropathol 6:19–24

    CAS  PubMed  Google Scholar 

  • Brown MJ, Rosen JL, Lisak RP (1987) Demyelination in vivo by Guillaine-Barre syndrome and other human serum. Muscle Nerve 10:263–271

    CAS  PubMed  Google Scholar 

  • Buchthal F, Carlsen F, Behse F (1987) Schmidt-Lanterman clefts: a morphometric study in human sural nerve. Am J Anat 180:156–160

    CAS  PubMed  Google Scholar 

  • Bunge MB (1993) Schwann cell regulation of extracellular matrix biosynthesis and assembly. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 299–316

    Google Scholar 

  • Buttermore ED, Thaxton CL, Bhat MA (2013) Organization and maintenance of molecular domains in myelinated axons. J Neurosci Res 91:603–622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cammer W, Blood BR, Norton WT et al (1978) Degradation of basic protein in myelin by neutral proteases secreted by stimulated macrophages: a possible mechanism of inflammatory demyelination. Proc Natl Acad Sci U S A 75:1554–1558

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carlsen F, Knappeis GG, Behse F (1974) Schwann cell length in unmyelinated fibres of human sural nerve. J Anat 117:463–467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carpenter S (1972) An ultrastructural study of an acute fatal case of the Guillain-Barre Syndrome. J Neurol Sci 15:125–140

    CAS  PubMed  Google Scholar 

  • Celio MR (1976) Die Schmidt-Lantermann’schen Einkerburgen der Myelinscheide des Mauthner-axons: Orte Longitudinalen Myelinwachstums. Brain Res 108:221–235

    CAS  PubMed  Google Scholar 

  • Chernousov MA, Yu W-M, Chen Z-L (2008) Regulation of Schwann cell function by the extracellular matrix. Glia 56:1498–1507

    PubMed  Google Scholar 

  • Cornblath DR, McArthur JC, Kennedy PGE et al (1987) Inflammatory demyelinating peripheral neuropathies associated with human T-cell lymphotropic virus type III infection. Ann Neurol 21:32–40

    CAS  PubMed  Google Scholar 

  • Dal Canto M, Wisniewski HM, Johnson AB et al (1975) Vesicular disruption of myelin in autoimmune demyelination. J Neurol Sci 24:313–319

    CAS  Google Scholar 

  • Dyck PJ (1969) Experimental hypertrophic neuropathy. Arch Neurol 21:73–95

    CAS  PubMed  Google Scholar 

  • Dyck PJ, Lais AC (1973) Evidence for segmental demyelination secondary to axonal degeneration in Friedreich’s ataxia. In: Kakulas BK (ed) Clinical studies in myology. Excerpta Medica, Amsterdam, pp 253–263

    Google Scholar 

  • Dyck PJ, Lambert EH (1970) Polyneuropathy associated with hypothyroidism. J Neuropathol Exp Neurol 29:631–658

    CAS  PubMed  Google Scholar 

  • Dyck PJ, Johnson WJ, Lambert EH, O’Brien PC (1971) Segmental demyelination secondary to axonal degeneration in uremic neuropathy. Mayo Clin Proc 46:400–431

    CAS  PubMed  Google Scholar 

  • Dyck PJ, Lais AC, Karnes JL et al (1981) Permanent axotomy, a model of axonal atrophy and secondary segmental demyelination and remyelination. Ann Neurol 9:575–583

    CAS  PubMed  Google Scholar 

  • Dyck PJ, Karnes J, Lais A et al (1984a) Pathologic alterations of the peripheral nervous system of humans. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 2nd edn. WB Saunders, Philadelphia, pp 760–870

    Google Scholar 

  • Dyck PJ, Nukada H, Lais AC, Karnes JL (1984b) Permanent axotomy: a model of chronic neuronal degeneration preceded by axonal atrophy, myelin remodeling, and degeneration. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 2nd edn. W.B. Saunders, Philadelphia, pp 666–690

    Google Scholar 

  • Dyck PJ, Giannini C, Lais A (1993) Pathologic alterations of nerves. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 30–34, Table 30–4

    Google Scholar 

  • Eames RA, Gamble HJ (1970) Schwann cell relationships in normal human cutaneous nerves. J Anat 106:417–435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Epstein LG, Prineas JW, Raine CS (1983) Attachment of myelin to coated pits on macrophages in experimental allergic encephalomyelitis. J Neurol Sci 61:341–348

    CAS  PubMed  Google Scholar 

  • Evans MJ, Finean JB, Woolf AL (1965) Ultrastructural studies of human cutaneous nerve with special reference to lamellated cell inclusions and vacuole containing cells. J Clin Pathol 18:188–192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fardeau M, Engel KW (1969) Ultrastructural study of a peripheral nerve biopsy in Refsum’s disease. J Neuropathol Exp Neurol 28:278–294

    CAS  PubMed  Google Scholar 

  • Filbin MT, Tennekoon G (1991) The role of complex carbohydrates in adhesion of the myelin protein P0. Neuron 7:845–855

    CAS  PubMed  Google Scholar 

  • Friede RL, Beuche W (1985) A new approach toward analysing peripheral nerve fiber population. I. variance in sheath thickness corresponds to different geometric proportions of the internodes. J Neuropathol Exp Neurol 44:60–72

    CAS  PubMed  Google Scholar 

  • Friede RL, Bischhausen R (1982) How are sheath dimensions affected by axon caliber and internodal length? Brain Res 235:335–350

    CAS  PubMed  Google Scholar 

  • Friede RL, Bruch W (1993) Macrophage functional properties during myelin degradation. Adv Neurol 59:327–336

    CAS  PubMed  Google Scholar 

  • Friede RL, Meier T, Diem M (1981) How is the exact length of an internode determined? J Neurol Sci 50:217–228

    CAS  PubMed  Google Scholar 

  • Ghabriel MN, Allt G (1979) The role of Schmidt-Lanterman incisures in Wallerian degeneration. I. A quantitative teased fiber study. Acta Neuropathol 48:83–93

    Google Scholar 

  • Ghabriel MN, Allt G (1981) Incisures of Schmidt-Lanterman. Prog Neurobiol 17:25–58

    CAS  PubMed  Google Scholar 

  • Gibbels E (1989) Morphometry of unmyelinated nerve fibers. Clin Neuropathol 8:179–187

    CAS  PubMed  Google Scholar 

  • Giese KP, Martini R, Lemke G et al (1992) Mouse P0 gene disruption leads to hypomyelination, abnormal expression of recognition molecules, and degeneration of myelin and axons. Cell 71:565–576

    CAS  PubMed  Google Scholar 

  • Goebel HH, Zeman W, Pilz H (1976) Ultrastructural investigations of peripheral nerves in Neuronal Ceroid -Lipofuscinoses (NCL). J Neurol 213:295–303

    CAS  PubMed  Google Scholar 

  • Gombault M (1886) Sur les lesion de la nevrite alcoolique. C R Acad Sci Hebd Seances Acad Sci D 102:439–440

    Google Scholar 

  • Griffin JW, Price DL (1981) Demyelination in experimental IDPN and hexacarbon neuropathies: evidence for an axonal influence. Lab Invest 45:130–141

    CAS  PubMed  Google Scholar 

  • Griffin JW, Thompson WJ (2008) Biology and pathology of nonmyelinating Schwann cells. Glia 56:1518–1531

    PubMed  Google Scholar 

  • Griffin JW, Drucker N, Benzaquen M et al (1987) Schwann cell proliferation and migration during paranodal demyelination. J Neurosci 7:682–699

    CAS  PubMed  Google Scholar 

  • Griffin JW, Stocks EA, Fahnestock K et al (1990) Schwann cell proliferation following lysolecithin-induced demyelination. J Neurocytol 19:367–384

    CAS  PubMed  Google Scholar 

  • Griffin JW, George R, Ho T (1993) Macrophage systems in peripheral nerves. A review. J Neuropathol Exp Neurol 52:553–560

    CAS  PubMed  Google Scholar 

  • Gutrecht JA, Dyck PJ (1970) Quantitative teased fiber and histological studies of human sural nerve during postnatal development. J Comp Neurol 138:117–130

    CAS  PubMed  Google Scholar 

  • Hall SM, Williams PL (1970) Studies on “incisures” of Schmidt and Lanterman. J Cell Sci 6:767–791

    CAS  PubMed  Google Scholar 

  • Hall SM (1983) The response of the (myelinating) Schwann cell population to multiple episodes of demyelination. J Neurocytol 12:1–12

    CAS  PubMed  Google Scholar 

  • Hall SM (1984) The effects of multiple sequential episodes of demyelination in the sciatic nerve of the mouse. Neuropathol Appl Neurobiol 10:461–478

    CAS  PubMed  Google Scholar 

  • Hays AP, Lee SS, Latov N (1988) Immune reactive C3d on the surface of myelin sheaths in neuropathy. J Neuroimmunol 18:231–244

    CAS  PubMed  Google Scholar 

  • Heath JW (1982) Double myelination of axons in the sympathetic nervous system. J Neurocytol 11:249–262

    CAS  PubMed  Google Scholar 

  • Hedley-White ET (1973) Myelination of rat sciatic nerve: comparison of undernutrition and cholesterol biosynthesis inhibition. J Neuropathol Exp Neurol 32:284–303

    Google Scholar 

  • Hirano A, Zimmermann HM, Levine S (1965) The fine structure of cerebral fluid accumulation. IX. Edema following silver nitrate implantation. Am J Pathol 47:537–548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirano A, Cook SD, Whittaker JN et al (1971) Fine structural aspects of demyelination in vitro. The effects of Guillain-Barre serum. J Neuropathol Exp Neurol 30:249–265

    CAS  PubMed  Google Scholar 

  • Honavar M, Tharakan JKJ, Hughes RAC et al (1991) A clinicopathological study of the Guillain-Barre syndrome. Nine cases and literature review. Brain 114:1245–1269

    PubMed  Google Scholar 

  • Inouye H, Kirschner DA (1988) Membrane interactions in nerve myelin. II Determination of surface change from biochemical data. Biophys J 53:247–260

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs JM (1988) On internodal length. J Anat 157:153–162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs JM, Scadding JW (1990) Morphological changes in IgM paraproteinaemic neuropathy. Acta Neuropathol 80:77–84

    CAS  PubMed  Google Scholar 

  • Johnson AB, Raine CS, Bornstein MB (1979) Experimental allergic encephalomyelitis: serum immunoglobulin binds to myelin and oligodendrocytes in cultured tissue. Ultrastructural-immunoperoxidase observations. Lab Invest 40:568–575

    CAS  PubMed  Google Scholar 

  • Kidd GJ, Ohno N, Trapp BD (2013) Chapter 5. Biology of Schwann cells. In: Said G, Krarup C (eds) Handbook clinical neurology, vol 115, 3rd series, Peripheral nerve disorders. Elsevier BV, Amsterdam, pp 55–79

    Google Scholar 

  • King RHM, Thomas PK (1984) The occurrence and significance of myelin with unusually large periodicity. Acta Neuropathol 63:319–329

    CAS  PubMed  Google Scholar 

  • Kirshner DA, Ganser AL (1984) Diffraction studies of molecular organization and membrane interactions in myelin. In: Morell P (ed) Myelin, 2nd edn. Plenum Press, New York, chapter 2

    Google Scholar 

  • Koski CL (1992) Humoral mechanisms in immune neuropathies. Neurol Clin 10:629–649

    CAS  PubMed  Google Scholar 

  • Lach B, Rippstein P, Atack D et al (1993) Immunoelectron microscopic localization of monoclonal IgM antibodies in gammopathy associated with peripheral demyelinative neuropathy. Acta Neuropathol 85:298–307

    CAS  PubMed  Google Scholar 

  • Lamarche J, Vital C (1987) Carcinomatous neuropathy. An ultrastructural study of 10 cases. Ann Pathol 7:98–105

    CAS  PubMed  Google Scholar 

  • Lampert PW, Garrett R (1971) Mechanism of demyelination in tellurium neuropathy. Lab Invest 25:380–388

    CAS  PubMed  Google Scholar 

  • Lampert PW, Schochet SS (1968) Demyelination and remyelination in lead neuropathy. J Neuropathol Exp Neurol 27:527–545

    CAS  PubMed  Google Scholar 

  • Lampert PW, Garrett R, Powell H (1977) Demyelination in allergic and Marek’s disease virus induced neuritis. Comparative electron microscopic studies. Acta Neuropathol 40:103–110

    CAS  PubMed  Google Scholar 

  • LeBlanc AC, Poduslo JF (1990) Axonal modulation of myelin gene expression in the peripheral nerve. J Neurosci Res 26:317–326

    CAS  PubMed  Google Scholar 

  • Leibowitz S, Gregson NA, Kennedy M, Kahn SN (1983) IgM paraproteins with immunological specificity for a Schwann cell component and peripheral nerve myelin in patients with polyneuropathy. J Neurol Sci 59:153–165

    CAS  PubMed  Google Scholar 

  • Lemke G, Lamar E, Patterson J (1988) Isolation and analysis of the gene encoding peripheral myelin protein zero. Neuron 1:73–83

    CAS  PubMed  Google Scholar 

  • Linington C, Brostoff SW (1993) Peripheral nerve antigens. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 404–417

    Google Scholar 

  • Logigian EL, Kelly JJ, Adelman LS (1994) Nerve conduction and biopsy correlation in over 100 consecutive patients with suspected polyneuropathy. Muscle Nerve 17:1010–1020

    CAS  PubMed  Google Scholar 

  • Low PA (1976) Hereditary hypertrophic neuropathy in the Trembler mouse. Part II. (Histopathological studies: electron microscopy). J Neurol Sci 30:343–368

    CAS  PubMed  Google Scholar 

  • Lyon G (1969) Ultrastructural study of a nerve biopsy from a case of early infantile chronic neuropathy. Acta Neuropathol 13:131–142

    CAS  PubMed  Google Scholar 

  • Lyon G, Evrard P (1970) Sur la presence d’inclusions cristallines dans les cellules de Schwann dans divers neuropathies peripheriques. C R Acad Sci Hebd Seances Acad Sci D 271:1000–1002

    CAS  PubMed  Google Scholar 

  • Madrid R, Bradley WG, Davis CJF (1977) The peroneal muscular atrophy syndrome. Clinical, genetic, electrophysiological and nerve biopsy studies. Part 2. Observations on pathological changes in sural nerve biopsies. J Neurol Sci 32:91–122, Figure 7

    CAS  PubMed  Google Scholar 

  • Masurovsky EB, Bunge MH, Bunge RP (1967) Cytological studies of organotypic cultures of rat dorsal root ganglia following X-irradiation in vitro. II. Changes in Schwann cells, myelin sheaths, and nerve fibers. J Cell Biol 32:497–518

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mezei C (1993) Myelination in the peripheral nerve during development. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 3rd edn. W.B. Saunders, Philadelphia, pp 267–281

    Google Scholar 

  • Michailov GV, Sereda MW, Brinkmann BG et al (2004) Axonal neuregulin-1 regulates myelin sheath thickness. Science 304:700–703

    CAS  PubMed  Google Scholar 

  • Milner P, Lovelidge CA, Taylor WA et al (1989) P0 myelin protein produces experimental allergic neuritis in Lewis rats. J Neurol Sci 790:275–285

    Google Scholar 

  • Mirsky R, Woodhoo A, Parkinson DB et al (2008) Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation. J Peripher Nerv Syst 13:122–135

    PubMed  Google Scholar 

  • Mugnaini E, Osen KK, Schnapp B, Friedrich VL (1977) Distribution of Schwann cell cytoplasm and plasmalemmal vesicles (caveolae) in peripheral myelin sheaths. An electron microscopic study with thin sections and freeze-fracturing. J Neurocytol 6:647–668

    CAS  PubMed  Google Scholar 

  • Noback CR (1953) The protagon (Pi) granules of Reich. J Comp Neurol 99:91–100

    CAS  PubMed  Google Scholar 

  • Noback CR (1954) Metachomasia in the nervous system. J Neuropathol Exp Neurol 13:161–167

    CAS  PubMed  Google Scholar 

  • Norton WT, Cammer W (1984) Isolation and characterization of myelin. In: Morell P (ed) Myelin, 2nd edn. Plenum Press, New York, chapter 5

    Google Scholar 

  • Nukada H, Dyck PJ (1987) Acute ischemia causes axonal stasis, swelling, attenuation, and secondary demyelination. Ann Neurol 22:311–318

    CAS  PubMed  Google Scholar 

  • Ochoa J, Mair WGP (1969) The normal sural nerve in man. I: Ultrastructure and number of fibres and cells. Acta Neuropathol 13:197–216

    CAS  PubMed  Google Scholar 

  • Ohi T, Kyle RA, Dyck PJ (1985) Axonal attenuation and secondary segmental demyelination in myeloma neuropathies. Ann Neurol 17:255–261

    CAS  PubMed  Google Scholar 

  • Ohnishi A, Tsuji S, Igisu H et al (1980) Beriberi neuropathy. Morphometric study of sural nerve. J Neurol Sci 45:177–190

    CAS  PubMed  Google Scholar 

  • Ohnishi A, Hirano A (1981) Uncompacted myelin lamellae in dysglobulinemic neuropathy. J Neurol Sci 51:131–140

    CAS  PubMed  Google Scholar 

  • Olsson Y, Sourander P (1969) The reliability of the diagnosis of metachromatic leukodystrophy by peripheral nerve biopsy. Acta Paediatr Scand 58:15–24

    CAS  PubMed  Google Scholar 

  • Pappenheimer AM, McGill DM (1973) Diphtheria - recent studies have clarified the molecular mechanism involved in its pathogenesis. Science 182:352–358

    Google Scholar 

  • Pereira JA, Lebrun-Julien F, Suter U (2012) Molecular mechanisms regulating myelination in the peripheral nerve. Trends Neurosci 35:123–134

    CAS  PubMed  Google Scholar 

  • Peterson AC, Bray GM (1984) Hypomyelination in the peripheral nervous system of shiverer mice and shiverer-normal chimera. J Comp Neurol 227:348–356

    CAS  PubMed  Google Scholar 

  • Pleasure DE, Towfighi J (1972) Onion bulb neuropathies. Arch Neurol 26:289–301

    CAS  PubMed  Google Scholar 

  • Pleasure DE, Feldmann B, Prockop DH (1973) Diphtheria toxin inhibits the synthesis of myelin proteolipid and basic proteins by peripheral nerves in vitro. J Neurochem 20:81–90

    CAS  PubMed  Google Scholar 

  • Pollard JD, King RHM, Thomas PK (1975) Recurrent experimental allergic neuritis. J Neurol Sci 24:365–383

    CAS  PubMed  Google Scholar 

  • Pollard JD, MacLeod JG, Gatenby P et al (1983) Prediction of response to plasma exchange in chronic relapsing polyneuropathy. J Neurol Sci 58:269–287

    CAS  PubMed  Google Scholar 

  • Pollard JD, McLeod JG, Feeney D (1985) Peripheral neuropathy in IgM kappa paraproteinaemia: clinical and ultrastructural studies in two patients. Clin Exp Neurol 21:41–54

    CAS  PubMed  Google Scholar 

  • Pollock M, Nukada H, Frith RW et al (1983) Peripheral neuropathy in Tangier disease. Brain 106:911–928

    PubMed  Google Scholar 

  • Prineas JW (1972) Acute idiopathic polyneuritis. An electron microscope study. Lab Invest 26:133–147

    CAS  PubMed  Google Scholar 

  • Prineas JW (1981) Pathology of the Guillain-Barre syndrome. Ann Neurol 9(suppl):6–19

    PubMed  Google Scholar 

  • Quintes S, Goebbels S, Saher G et al (2010) Neuron-glia signaling and the protection of axon function by Schwann cells. J Peripher Nerv Syst 15:10–16

    CAS  PubMed  Google Scholar 

  • Raine CS (1977) Schwann cell responses during recurrent demyelination and their relevance to onion bulb formation. Neuropathol Appl Neurobiol 3:453–470

    Google Scholar 

  • Raine CS, Bornstein MB (1979) Experimental allergic neuritis. Ultrastructure of serum induced myelin aberration in peripheral nervous system cultures. Lab Invest 40:423–432

    CAS  PubMed  Google Scholar 

  • Reich F (1903) Uber eine neue granulation in den nervenzellen. Arch Anat Physiol (Physiol Abt) 27:208–214

    Google Scholar 

  • Robson JT (1951) Protagon granules in the normal sciatic nerve with some observations on the greater splanchnic nerve. J Neuropathol Exp Neurol 10:77–81

    CAS  PubMed  Google Scholar 

  • Ropte S, Scheidt P, Friede RL (1990) The intermediate dense line of the myelin sheath is preferentially accessible to cations and is stabilized by cations. J Neurocytol 19:242–252

    CAS  PubMed  Google Scholar 

  • Rosen JL, Brown MJ, Hickey WF et al (1990) Early myelin lesions in experimental allergic neuritis. Muscle Nerve 13:629–636

    CAS  PubMed  Google Scholar 

  • Rostami AM (1993) Pathogenesis of immune-mediated neuropathies. Pediatr Res 33(suppl 1):S90–S94

    CAS  PubMed  Google Scholar 

  • Said G, Hontebeyrie-Joskowicz M (1992) Nerve lesions induced by macrophage activation. Res Immunol 143:589–599

    CAS  PubMed  Google Scholar 

  • Said G, Boudier L, Zingraff J et al (1983) Different patterns of uremic polyneuropathy: a clinicopathologic study. Neurology 33:567–574, Figure 8

    CAS  PubMed  Google Scholar 

  • Said G, Ropert A, Faux N (1984) Length dependent degeneration of fibrils in Portuguese amyloid neuropathy. Neurology 34:1025–1032

    CAS  PubMed  Google Scholar 

  • Saida T, Saida K, Lisak RP et al (1982) In vivo demyelinating activity of sera from patients with Guillain-Barre syndrome. Ann Neurol 11:69–75

    CAS  PubMed  Google Scholar 

  • Salzer JL, Brophy PJ, Peles E (2008) Molecular domains of myelinated axons in the peripheral nervous system. Glia 56:1532–1540

    PubMed  Google Scholar 

  • Schlaepfer WW (1974) Axonal degeneration in the sural nerves of cancer patients. Cancer 34:371–381

    CAS  PubMed  Google Scholar 

  • Schlaepfer WW, Myers FK (1973) Relationship of internode elongation and growth in the rat sural nerve. J Comp Neurol 147:255–266

    CAS  PubMed  Google Scholar 

  • Scherer SS, Wrabetz L (2008) Molecular mechanisms of inherited demyelinating neuropathies. Glia 56:1578–1589

    PubMed Central  PubMed  Google Scholar 

  • Scherer SS (1999) Nodes, paranodes, and incisures: from form to function. Ann N Y Acad Sci 883:131–142

    CAS  PubMed  Google Scholar 

  • Schroder JM, Himmelmann F (1992) Fine structural evaluation of altered Schmidt-Lanterman incisures in human sural nerve biopsies. Acta Neuropathol 83:120–133

    CAS  PubMed  Google Scholar 

  • Schroder JM, Sommer C (1991) Mitochondrial abnormalities in human sural nerves: fine structural evaluation of cases with mitochondrial myopathy, hereditary and non-hereditary neuropathies, and review of the literature. Acta Neuropathol 82:471–482

    CAS  PubMed  Google Scholar 

  • Sharma AK, Thomas PK (1975) Quantitative studies on age changes in unmyelinated nerve fibers in the vagus nerve in man. In: Kunze K, Desmedt JE (eds) Studies on neuromuscular diseases. S Karger, Basel, pp 211–219

    Google Scholar 

  • Shetty VP, Antia NH, Jacobs JM (1988) The pathology of early leprous neuropathy. J Neurol Sci 88:115–131

    CAS  PubMed  Google Scholar 

  • Smith KJ, Hall SM (1988) Peripheral demyelination and remyelination initiated by the calcium-selective ionophore ionomycin: in vivo observations. J Neurol Sci 83:37–53

    CAS  PubMed  Google Scholar 

  • Stoll G, Schwendemann G, Heininger K et al (1986) Relation of clinical, serological, morphological, and electrophysiological findings in galactocerebroside-induced experimental allergic neuritis. J Neurol Neurosurg Psychiatry 49:258–264

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stoll G, Schmidt B, Toyka KV et al (1991) Expression of the terminal complement complex (C5b-9) in autoimmune-mediated demyelination. Ann Neurol 30:147–155

    CAS  PubMed  Google Scholar 

  • Sumi SM, Farrell DF, Knauss TA (1983) Lymphoma and leukemia manifested by steroid-responsive polyneuropathy. Arch Neurol 40:577–582

    CAS  PubMed  Google Scholar 

  • Suter U, Welcher AA, Ozcelik T et al (1992) Trembler mouse carries a point mutation in a myelin gene. Nature 356:241–244

    CAS  PubMed  Google Scholar 

  • Suter U, Welcher AA, Snipes GJ (1993) Progress in the molecular understanding of hereditary peripheral neuropathies reveals new insights into the biology of the peripheral nervous system. Trends Neurosci 16:50–56

    CAS  PubMed  Google Scholar 

  • Suzuki K, DePaul LD (1972) Myelin degeneration in sciatic nerve of rats treated with hypocholesterolemic drug AY9944. Lab Invest 26:534–539

    CAS  PubMed  Google Scholar 

  • Svaren J, Meijer D (2008) The molecular machinery of myelin gene transcription in Schwann cells. Glia 56:1541–1551

    PubMed Central  PubMed  Google Scholar 

  • Taveggia C, Zanazzi G, Petrylak A et al (2005) Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47:681–694

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas PK (1993) Phytanic acid storage disease: pathology of Refsum’s disease. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 28–73

    Google Scholar 

  • Thomas PK, King RHM (1974) Peripheral nerve changes in amyloid neuropathy. Brain 97:395–406

    CAS  PubMed  Google Scholar 

  • Thomas PK, Young JZ (1949) Internode length in the nerves of fishes. J Anat 83:336–350

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas PK, King RHM, Sharma AK (1980) Changes with age in the peripheral nerves of the rat. An ultrastructural study. Acta Neuropathol 52:1–6

    CAS  PubMed  Google Scholar 

  • Thomas PK, Berthold CH, Ochoa J (1993) Microscopic anatomy of the peripheral nervous system. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 28–73

    Google Scholar 

  • Trapp BD (1990) Myelin-associated glycoprotein. Location and potential functions. Ann N Y Acad Sci 605:29–43

    CAS  PubMed  Google Scholar 

  • Trapp BD, McIntyre JJ, Quarles RH et al (1979) Immunocytochemical localization of rat peripheral nervous system myelin proteins: P2 protein is not a component of all peripheral nervous system myelin sheaths. Proc Natl Acad Sci U S A 76:3552–3556

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vallat JM, Vital C, Vallat M et al (1973) Neuropathie peripherique a la vincristine. Etude ultrastructurale d’une biopsies due muscle et du nerf peripherique. Rev Neurol 129:365–368

    CAS  PubMed  Google Scholar 

  • Vallat JM, Leboutet MJ, Jauberteau MO et al (1994) Widenings of the myelin lamellae in a typical Guillain-Barre syndrome. Muscle Nerve 17:378–380

    CAS  PubMed  Google Scholar 

  • Vital C, Vallat JM (1987) Ultrastructural study of the human diseased peripheral nerve, 2nd edn. Elsevier, New York

    Google Scholar 

  • Vital C, Staeffen J, Series C et al (1978) Relapsing polyradiculitis after portocaval anastomosis. Eur Neurol 17:108–116

    CAS  PubMed  Google Scholar 

  • Vital C, Bonnaud E, Arne L et al (1975) Polyradiculonevrite au cours d’une leucemie lymphoide chronique. Etude ultrastructurale d’une biopsie de nerf peripherique. Acta Neuropathol 32:169–172

    CAS  PubMed  Google Scholar 

  • Vital C, Brechenmacher C, Reiffers J et al (1983) Uncompacted myelin lamellae in two cases of peripheral neuropathy. Acta Neuropathol 60:252–256

    CAS  PubMed  Google Scholar 

  • Vital C, Brechenmacher C, Cardinaud JP et al (1985) Acute inflammatory demyelinating polyneuropathy in a diabetic patient: predominance of vesicular disruption in myelin sheaths. Acta Neuropathol 67:337–340

    CAS  PubMed  Google Scholar 

  • Vital C, Dumas P, Latinville D et al (1986) Relapsing inflammatory demyelinating polyneuropathy in a diabetic patient. Acta Neuropathol 71:94–99

    CAS  PubMed  Google Scholar 

  • Vital A, Vital C, Brechenmacher C et al (1990) Chronic inflammatory demyelinating polyneuropathy in childhood: ultrastructural features of peripheral nerve biopsy in four cases. Eur J Pediatr 149:654–658

    CAS  PubMed  Google Scholar 

  • Vital A, Latinville D, Aupy M et al (1991) Inflammatory demyelinating lesions in two patients with IgM monoclonal gammopathy and polyneuropathy. Neuropathol Appl Neurobiol 17:415–420

    CAS  PubMed  Google Scholar 

  • Vital A, Vital C, Julien J et al (1992) Occurrence of active demyelinating lesions in children with hereditary motor and sensory neuropathy (HMSN) type I. Acta Neuropathol 84:433–436, figure 2

    CAS  PubMed  Google Scholar 

  • Vital C, Gherardi R, Vital A et al (1994) Uncompacted myelin lamellae in polyneuropathy, organomegaly, endocrinopathy, M-protein and skin changes syndrome. Ultrastructural study of peripheral nerve biopsy from 22 patients. Acta Neuropathol 87:302–307

    CAS  PubMed  Google Scholar 

  • Waxman SG (1980) Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve 3:141–150

    CAS  PubMed  Google Scholar 

  • Wayne Moore GR, Raine CS (1988) Immunogold localization and analysis of IgG during immune-mediated demyelination. Lab Invest 59:641–648

    Google Scholar 

  • Webster D d F (1993) Development of peripheral nerve fibers. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 3rd edn. WB Saunders, Philadelphia, pp 243–266

    Google Scholar 

  • Webster H d F, Spiro D (1960) Phase and electron microscopic studies of experimental demyelination I. Variations in myelin sheath contour in normal guinea pig sciatic nerve. J Neuropathol Exp Neurol 19:42–69

    CAS  PubMed  Google Scholar 

  • Weinberg H, Spencer PS (1976) Studies on the control of myelinogenesis II. Evidence for neuronal regulation of myelinogenesis. Brain Res 113:363–378

    CAS  PubMed  Google Scholar 

  • Weller RO, Herzog I (1970) Schwann cell lysosomes in hypertrophic neuropathy and in normal human nerves. Brain 93:347–356

    CAS  PubMed  Google Scholar 

  • Wiley CA, Ellisman MH (1980) Rows of dimeric particles within the axolemma and juxtaposed particles within glia, incorporated into a new model for the paranodal glial-axonal junction at the Node of Ranvier. J Cell Biol 84:261–280

    CAS  PubMed  Google Scholar 

  • Wiley-Livingston CA, Ellisman MH (1980) Development of axonal membrane specializations defines nodes of Ranvier and precedes Schwann cell myelin elaboration. Dev Biol 79:334–355

    CAS  PubMed  Google Scholar 

  • Williams PL, Hall SM (1971) Prolonged in vivo observations of normal peripheral nerve fibres and their acute reactions to crush and deliberate trauma. J Anat 108:397–408

    CAS  PubMed Central  PubMed  Google Scholar 

  • Windebank AJ, Dyck PJ (1984) Lead intoxication as a model of primary segmental demyelination. In: Dyck PJ, Thomas PK et al (eds) Peripheral neuropathy, 2nd edn. W.B. Saunders, Philadelphia, pp 650–665

    Google Scholar 

  • Wisniewski H, Prineas J, Raine CS (1969) An ultrastructural study of experimental demyelination and remyelination, part I. Lab Invest 21:105–118

    CAS  PubMed  Google Scholar 

  • Woodhoo A, Sommer L (2008) Development of the Schwann cell lineage: from the neural crest to the myelinated nerve. Glia 56:1481–1490

    PubMed  Google Scholar 

  • Yiannikas C, McLeod JG, Pollard JD, Baverstock J (1986) Peripheral neuropathy associated with mitochondrial myopathy. Ann Neurol 20:249–257

    CAS  PubMed  Google Scholar 

  • Yoshikawa H, Dyck PJ (1991) Uncompacted inner myelin lamellae in inherited tendency to pressure palsy. J Neuropathol Exp Neurol 50:649–657

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bilbao, J.M., Schmidt, R.E. (2015). Schwann Cells and Myelin in the Peripheral Nervous System. In: Biopsy Diagnosis of Peripheral Neuropathy. Springer, Cham. https://doi.org/10.1007/978-3-319-07311-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07311-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07310-1

  • Online ISBN: 978-3-319-07311-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics