Advertisement

EEG-Based Measurement of Emotion Induced by Mode, Rhythm, and MV of Chinese Pop Music

  • Mao Mao
  • Pei-Luen Patrick Rau
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8528)

Abstract

This present study aims to gain insights of how listeners feel about Chinese pop music and music video (MV) by examining music-induced emotion through subjective, physiological and regional brain activation measurement. This study focused on how the following aspects influence emotion: a) mode (major, minor, pentatonic), b) rhythm (firm vs. flowing), c) MV (narrative, live performance, parody). The results suggest that Chinese traditional pentatonic mode elicits sublime feelings, corresponding to lower HRV and less frontal-parietal beta power difference. Emotion elicited by major/minor mode is predictable according to discovered mode-emotion pattern from previous studies. As for the effect of MV on emotion, previous studies concerning emotion induced by narrative and live performance MV can be extended to Chinese pop MV. Extreme positive emotion and corresponded beta power spectrum are distinctive emotion cues for parody MVs. We also noted that firm rhythm in Chinese pop music is associated with high arousal level, while flowing rhythm may induce sublime feelings. This study indicates that musical features (audio) and music video styles (visual) in Chinese pop music can elicit different emotions. Emotion measures such as psychological ratings, HRV and EEG power spectral analysis should be comprehensively considered when interpreting listeners’ emotion.

Keywords

Chinese pop music emotion music video EEG measurement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chew, E.: Towards a mathematical model of tonality (2000)Google Scholar
  2. 2.
    Gomez, P., Danuser, B.: Relationships between musical structure and psychophysiological measures of emotion. Emotion 7, 377–387 (2007)CrossRefGoogle Scholar
  3. 3.
    Accordino, R., Comer, R., Heller, W.B.: Searching for music’s potential: A critical examination of research on music therapy with individuals with autism. Res. Autism Spectr. Disord. 1, 101–115 (2007)CrossRefGoogle Scholar
  4. 4.
    Perlovsky, L.: Musical emotions: Functions, origins, evolution. Phys. Life Rev. 7, 2–27 (2010)CrossRefGoogle Scholar
  5. 5.
    Hodges, D.A.: Handbook of music psychology. IMR press San Antonio (1996)Google Scholar
  6. 6.
    Hallam, S., Cross, I., Thaut, M.: Oxford Handbook of Music Psychology. Oxford University Press (2008)Google Scholar
  7. 7.
    Krumhansl, C.L.: Rhythm and pitch in music cognition. Psychol. Bull. 126, 159 (2000)CrossRefGoogle Scholar
  8. 8.
    Gold, T.B.: Go with your feelings: Hong Kong and Taiwan popular culture in Greater China. China Q. 136, 907–925 (1993)CrossRefGoogle Scholar
  9. 9.
    Berger, J., Milkman, K.L.: What makes online content viral? J. Mark. Res. 49, 192–205 (2012)Google Scholar
  10. 10.
    Juslin, P.N., Vastfjall, D.: Emotional responses to music: The need to consider underlying mechanisms. Behav. Brain Sci. 31, 559–575 (2008)CrossRefGoogle Scholar
  11. 11.
    Juslin, P.N.: Music and emotion: Seven questions, seven answers. Music Mind Essays Honour John Slob., 113–135 (2011)Google Scholar
  12. 12.
    Hevner, K.: Experimental studies of the elements of expression in music. Am. J. Psychol. 48, 246–268 (1936)CrossRefGoogle Scholar
  13. 13.
    Boltz, M.G., Ebendorf, B., Field, B.: Audiovisual interactions: The impact of visual information on music perception and memory. Music Percept. 27, 43–59 (2009)CrossRefGoogle Scholar
  14. 14.
    Geringer, J.M., Cassidy, J.W., Byo, J.L.: Nonmusic majors’ cognitive and affective responses to performance and programmatic music videos. J. Res. Music Educ. 45, 221–233 (1997)CrossRefGoogle Scholar
  15. 15.
    Petty, R.E., Wegener, D.T.: The elaboration likelihood model: Current status and controversies (1999)Google Scholar
  16. 16.
    Schmidt, L.A., Trainor, L.J.: Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cogn. Emot. 15, 487–500 (2001)CrossRefGoogle Scholar
  17. 17.
    Zentner, M., Grandjean, D., Scherer, K.R.: Emotions evoked by the sound of music: characterization, classification, and measurement. Emotion 8, 494 (2008)CrossRefGoogle Scholar
  18. 18.
    Khushaba, R.N., Greenacre, L., Kodagoda, S., Louviere, J., Burke, S., Dissanayake, G.: Choice modeling and the brain: A study on the Electroencephalogram (EEG) of preferences. Expert Syst. Appl. 39, 12378–12388 (2012)CrossRefGoogle Scholar
  19. 19.
    Saltzberg, B., Burton Jr., W.D., Barlow, J.S., Burch, N.R.: Moments of the power spectral density estimated from samples of the autocorrelation function (A robust procedure for monitoring changes in the statistical properties of lengthy non-stationary time series such as the EEG). Electroencephalogr. Clin. Neurophysiol. 61, 89–93 (1985)CrossRefGoogle Scholar
  20. 20.
    Flusser, J., Zitova, B., Suk, T.: Moments and moment invariants in pattern recognition. Wiley (2009)Google Scholar
  21. 21.
    Hevner, K.: The affective character of the major and minor modes in music. Am. J. Psychol. 47, 103–118 (1935)CrossRefGoogle Scholar
  22. 22.
    Goldberg, M.E., Chattopadhyay, A., Gorn, G.J., Rosenblatt, J.: Music, music videos, and wear out. Psychol. Mark. 10, 1–13 (1993)CrossRefGoogle Scholar
  23. 23.
    Müller, M.M., Keil, A., Gruber, T., Elbert, T.: Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clin. Neurophysiol. 110, 1913–1920 (1999)CrossRefGoogle Scholar
  24. 24.
    Cohen, A.J.: How music influences the interpretation of film and video: Approaches from experimental psychology. Sel. Rep. Ethnomusicol. Perspect. Syst. Musicol. 12, 15–36 (2005)Google Scholar
  25. 25.
    Koelstra, S., Yazdani, A., Soleymani, M., Mühl, C., Lee, J.-S., Nijholt, A., Pun, T., Ebrahimi, T., Patras, I.: Single Trial Classification of EEG and Peripheral Physiological Signals for Recognition of Emotions Induced by Music Videos Brain Informatics. Presented at the, Berlin/Heidelberg (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Mao Mao
    • 1
  • Pei-Luen Patrick Rau
    • 2
  1. 1.Department of PsychologyUniversity of CambridgeCambridgeUnited Kingdom
  2. 2.Department of Industrial EngineeringTsinghua UniversityBeijingP.R. China

Personalised recommendations