Skip to main content

Renewable Energy Options and Frequency Regulation

  • Chapter
  • First Online:
Robust Power System Frequency Control

Part of the book series: Power Electronics and Power Systems ((PEPS))

Abstract

This chapter presents an overview of the key issues concerning the integration of renewable energy sources (RESs) into the power system frequency regulation that are of most interest today. The most important issues with the recent achievements in this literature are briefly reviewed. The impact of RESs on frequency control problem is described. An updated frequency response model is introduced. Power system frequency response in the presence of RESs and associated issues is analyzed, the need for revising frequency performance standards is emphasized and an overall framework for contribution of RESs in frequency control is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Bevrani, A. Ghosh, G. Ledwich, Renewable energy sources and frequency regulation: survey and new perspectives. IET Renew. Power Gener. 4(5), 438–457 (2010)

    Google Scholar 

  2. The United Nations Framework Convention on Climate Change, The Kyoto Protocol (1997) http://unfccc.int/resource/docs/convkp/kpeng.pdf

  3. P. Gardner, H. Snodin, A. Higgins et al., The impacts of increased levels of wind penetration on the electricity systems of the republic of Ireland and Northern Ireland (final report). Garrad Hassan and Partners Ltd. (2003), http://www.cer.ie/cerdocs/cer03024.pdf

  4. Y.V. Makarov, V.I. Reshetov, V.A. Stroev et al., Blackout prevention in the United States, Europe and Russia. Proc. IEEE 93(11), 1942–1955 (2005)

    Article  Google Scholar 

  5. H. Outhred, S.R. Bull, S. Kelly, Meeting the challenges of integrating renewable energy into competitive electricity industries (2007), http://www.reilproject.org/documents/GridIntegrationFINAL.pdf

  6. T. Hiyama, D. Zuo, T. Funabashi, Multi-agent based automatic generation control of isolated stand alone power system, in Proceedings of International Conference on Power System Technology POWERCON, vol. 1, pp. 139–143 (2002)

    Google Scholar 

  7. Department of Trade and Industry, The energy challenge energy review report, DTI, London, ISBN 0101688725 (2006)

    Google Scholar 

  8. GWEC Latest News. US, China & Spain lead world wind power market in 2007. The Global Wind Energy Council (2008) http://www.gwec.net/. Accessed 28 Feb 2008

  9. H. Knudsen, J.N. Nielsen, Introduction to the Modelling of Wind Turbines, in Wind Power in Power Systems, ed. by T. Ackermann (Wiley, England, 2005)

    Google Scholar 

  10. H. Bevrani, G. Ledwich, Z.Y. Dong, J.J. Ford, Regional frequency response analysis under normal and emergency conditions. Electr. Power Syst. Res. 79, 837–845 (2009)

    Article  Google Scholar 

  11. EWIS. Towards a successful integration of wind power into European electricity grids (final report) (2007), http://www.ornl.gov/~webworks/cppr/y2001/rpt/122302.pdf

  12. AWEA Resources. U.S. Wind energy projects. The American Wind Energy Association (2008), http://www.awea.org

  13. T. Sasaki, T. Kadoya, K. Enomoto, Study on load frequency control using redox flow batteries. IEEE Trans. Power Syst. 19(1), 660–667 (2004)

    Article  Google Scholar 

  14. H. Asano, K. Yajima, Y. Kaya, Influence of photovoltaic power generation on required capacity for load frequency control. IEEE Trans. Energy Convers. 11(1), 188–193 (1996)

    Article  Google Scholar 

  15. S. Yanagawa, T. Kato, K. Wu et al., Evaluation of LFC capacity for output fluctuation of photovoltaic power generation systems based on multi-point observation of insolation, in Proceedings of Conference on Energy, Economy and Environment, vol. 17, pp. 271–276 (2001)

    Google Scholar 

  16. H. Bevrani, M. Watanabe, Y. Mitani, Power System Monitoring and Control (Wiley-IEEE Press, New York, 2014)

    Book  Google Scholar 

  17. H. Bevrani, T. Hiyama, Intelligent Automatic Generation Control (CRC Press, New York, 2011)

    Google Scholar 

  18. B. Parsons, M. Milligan, B. Zavadil, Grid impacts of wind power: a summary of recent studies in the United States, in Presented at the European Wind Energy Conference and Exhibition, Madrid, Spain (2003)

    Google Scholar 

  19. F. Koch, I. Erlich, F. Shewarega, Dynamic simulation of large wind farms integrated in a multimachine network, in Presented at the IEEE PES General Meeting, Ontario, Canada (2003)

    Google Scholar 

  20. I. Erlich, K. Rensch, F. Shewarega, Impact of large wind power generation on frequency stability, in Proceedings of PES General Meeting (2006)

    Google Scholar 

  21. W. Li, G. Joos, C. Abbey, Wind power impact on system frequency deviation and an ESS based power filtering algorithm solution, in Proceedings of IEEE PSCE 2006, pp. 2077–2084 (2006)

    Google Scholar 

  22. K. Abe, S. Ohba, S. Iwamoto, New load frequency control method suitable for large penetration of wind power generations, in Proceedings of 2006 PES General Meeting (2006)

    Google Scholar 

  23. T. Kinjo, T. Senjyu, N. Urasaki, et al., Output leveling of wind power generation system by EDLC energy storage, in Proceedings of 40th Annual Conference of IEEE IECON 2004, vol. 3, pp. 3088–3093 (2004)

    Google Scholar 

  24. S. Nomura, Y. Ohata, T. Hagita et al., Wind farms linked by SMES systems. IEEE Trans. Appl. Supercond. 15(2), 1951–1954 (2005)

    Article  Google Scholar 

  25. J.P. Barton, D.G. Infield, Energy storage and its use with intermittent renewable energy. IEEE Trans Energy Convers. 19(2), 441–448 (2004)

    Article  Google Scholar 

  26. G. Strbac, A. Shakoor, M. Black et al., Impact of wind generation on the operation and development of the UK electricity systems. Electr. Power Syst. Res. 77, 1214–1227 (2007)

    Article  Google Scholar 

  27. H. Banakar, C. Luo, B.T. Ooi, Impacts of wind power minute to minute variation on power system operation. IEEE Trans Power Syst. 23(1), 150–160 (2008)

    Article  Google Scholar 

  28. G. Lalor, A. Mullane, M. O’Malley, Frequency control and wind turbine technology. IEEE Trans Power Syst. 20(4), 1905–1913 (2005)

    Article  Google Scholar 

  29. J. Morren, S.W.H. de Haan, W.L. Kling et al., Wind turbine emulating inertia and supporting primary frequency control. IEEE Trans Power Syst. 21(1), 433–434 (2006)

    Article  Google Scholar 

  30. C. Luo, H. Golestani Far, H. Banakar, et al., Estimation of wind penetration as limited by frequency deviation, IEEE Trans. Energy Convers., vol. 22, no. (2), pp. 783–791 (2007)

    Google Scholar 

  31. V. Courtecuisse, M.E. Mokadem, C. Saudemont, et al., Experiment of a wind generator participation to frequency control, Presented at the 1st EPE-Wind Energy Chapter, Delft (2008)

    Google Scholar 

  32. P. Rosas, Dynamic influences of wind power on the power system, Ph.D. dissertation, Technical University of Denmark (2003)

    Google Scholar 

  33. N.R. Ullah, T. Thiringer, D. Karlsson, Temporary primary frequency control support by variable speed wind turbines: potential and applications. IEEE Trans Power Syst. 23(2), 601–612 (2008)

    Article  Google Scholar 

  34. J. Morren, S.W.H. de Haan, J.A. Ferreira, Primary power/frequency control with wind turbines and fuel cells, in Proceedings of 2006 PES General Meeting (2006)

    Google Scholar 

  35. K. Rajashekara, Hybrid fuel-cell strategies for clean power generation. IEEE Trans Ind. Appl. 41(3), 682–689 (2005)

    Article  Google Scholar 

  36. AEMC, Draft national electricity amendment (technical standards for wind generation and other generator connections) Rule (2006), http://www.aemc.gov.au

  37. J.L.R. Amenedo, S. Arnalte, J.C. Burgos, Automatic generation control of a wind farm with variable speed wind turbines. IEEE Trans. Energy Convers. 17(2), 279–284 (2002)

    Article  Google Scholar 

  38. R. Sebastian, J. Quuesada, Distributed control system for frequency control in a isolated wind system. Renew. Energy 31, 285–305 (2006)

    Article  Google Scholar 

  39. E. Hirst, Integrating wind output with bulk power operations and wholesale electricity markets. Wind Energy 5(1), 19–36 (2002)

    Article  Google Scholar 

  40. M. Milligan (2003) Wind power plants and system operation in the hourly time domain, in Windpower 2003, Austin, TX: AWEA

    Google Scholar 

  41. R. Doherty, H. Outhred, M. O’Malley, Establishing the role that wind generation may have in future generation portfolios. IEEE Trans. Power Syst. 21, 1415–1422 (2006)

    Article  Google Scholar 

  42. X. Li, Y.J. Song, S.B. Han, Frequency control in micro-grid power system combined with electrolyzer system and fuzzy PI controller. J. Power Sources 180, 468–475 (2008)

    Article  Google Scholar 

  43. J.G. Slootweg, W.L. Kling, The impact of large scale wind power generation on power system oscillations. Electr. Power Syst. Res. 67, 9–20 (2003)

    Article  Google Scholar 

  44. C. Chompoo-inwai, W. Lee, P. Fuangfoo et al., System impact study for the interconnection of wind generation and utility system. IEEE Trans. Ind. Appl. vol. 41, pp. 163–168 (2005)

    Google Scholar 

  45. S. Dechanupaprittha, K. Hongesombut, Y. Mitani et al., Frequency stabilization of interconnected power system with wind farms by controllable distributed generator, in Proceedings of Power Engineering Conference (IPEC), vol. 2, pp. 679–683 (2005)

    Google Scholar 

  46. J.W. Black, M. Ilic, Demand-based frequency control for distributed generation, in Proceedings of IEEE PES Summer Meeting, vol. 1, pp. 427–432 (2002)

    Google Scholar 

  47. H. Holttinen, Impact of hourly wind power variation on the system operation in the Nordic Countries. Wind Energy 8(2), 197–218 (2005)

    Article  Google Scholar 

  48. T. Ackermann, P.E. Morthorst, Economic Aspects of Wind Power in Power Systems, A Chapter, in Wind Power in Power Systems, ed. by T. Ackermann (Wiley, England, 2005)

    Chapter  Google Scholar 

  49. B. Kirby, Frequency regulation basics and trends. Oak Ridge National Lab. (2004), http://www.ornl.gov/~webworks/cppr/y2001/rpt/122302.pdf

  50. M.K. Donnelly, J.E. Dagle, D.J. Trudnowski et al., Impacts of the distributed utility on transmission system stability. IEEE Trans. Power Syst. 11(2), 741–747 (1996)

    Article  Google Scholar 

  51. D. Xu, A.A. Girgis, Optimal load shedding strategy in power systems with distributed generation, in Proceedings of IEEE PES Winter Meeting, vol. 2, pp. 788–793 (2001)

    Google Scholar 

  52. H. Bevrani, G. Ledwich, J.J. Ford, On the use of df/dt in power system emergency control. in Proceedings of IEEE Power Systems Conference and Exposition, Seattle, Washington, USA (2009)

    Google Scholar 

  53. I. Erlich, F. Shewarega, Insert impact of large-scale wind power generation on the dynamic behaviour of interconnected systems, in Proceedings of iREP Symposium-Bulk Power System Dynamics and Control, Charleston, Sc, USA (2007)

    Google Scholar 

  54. IEEE 1547, Standard for interconnection distributed resources with electric power system (2003)

    Google Scholar 

  55. V.V. Thong, J. Driesen, R. Belmans, Overview and comparisons of existing DG interconnection standards and technical guidelines, in Proceedings of International Conference on Clean Electrical Power-ICCEP, pp. 51–54 (2007)

    Google Scholar 

  56. A.T. Moore, Distributed generation (DG) protection overview. Technical report, University of Western Ontario, 2008 http://www.eng.uwo.ca/people/tsidhu/Documents/DG%20Protection%20V4.pdf

  57. H. Bevrani, Robust Power system Frequency Control, 1st edn. (Springer, New York, 2009)

    Book  MATH  Google Scholar 

  58. M. Tsili, S. Papathanassiou, A review of grid code technical requirements for wind farms. IET Renew. Power Gener. 3(3), 308–332 (2009)

    Article  Google Scholar 

  59. ESB National Grid: Options for operational rules to curtail wind generation (2009), www.cer.ie/cerdocs/cer04247.doc

  60. M. Doumbia, K. Agbossou, T. Bose, islanding protection evaluation of inverter-based grid-connected hybrid renewable energy system, in Proceedings of IEEE Conference on Electrical and Computer Engineering, vol. 2, pp. 1081–1084 (2004)

    Google Scholar 

  61. H. Maejima, Y. Fujioka, et al., Structures of small power supply networks and a practical example with renewable energy resources, in Proceedings of IEEE PES General Meeting (2007)

    Google Scholar 

  62. F. Katiraei, M.R. Iravani, P.W. Lehn, Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans. Power Delivery 20(1), 248–257 (2005)

    Article  Google Scholar 

  63. F. Katiraei, M.R. Iravani, Power management strategies for a microgrid with multiple distributed generation units. IEEE Trans. Power Syst. 21(4), 1821–1831 (2006)

    Article  Google Scholar 

  64. A. Yazdani, R. Iravani, A unified dynamic model and control for the voltage-sourced converter under unbalanced grid conditions. IEEE Trans. Power Delivery 21(3), 1620–1629 (2006)

    Article  Google Scholar 

  65. H. Karimi, H. Nikkhajoei, R. Iravani, Control of an electronically-coupled distributed resource unit subsequent to an islanding event. IEEE Trans. Power Delivery 23(1), 493–501 (2008)

    Article  Google Scholar 

  66. H. Nikkhajoei, R. Iravani, Steady-state model and power flow analysis of electronically-coupled distributed resource units. IEEE Trans. Power Del. 22(1), 721–728 (2007)

    Article  Google Scholar 

  67. H. Nikkhajoei, R. Iravani, Dynamic model and control of AC–DC–AC voltage-sourced converter system for distributed resources. IEEE Trans. Power Delivery 22(2), 1169–1178 (2007)

    Article  Google Scholar 

  68. J. Morren, J. Pierik, S.W.H. de Haan, Inertial response of variable speed wind turbines. Electr. Power Syst. Res. 76(11), 980–987 (2006)

    Article  Google Scholar 

  69. A. Mullane, M. O’Malley, The inertial response of induction-machine-based wind turbine. IEEE Trans. Power Syst., 20(3), 1496–1503, 2005

    Google Scholar 

  70. G. Ramtharan, J.B. Ekanayake, N. Jenkins, Frequency support from doubly fed induction generator wind turbines, IET Renew Power Gener, 1(1), 3–9 (2007)

    Google Scholar 

  71. E. vital, A. Keane, M. O’Malley, Varying penetration ratios of wind turbine technologies for voltage and frequency stability, in Proceedings of IEEE PES General Meeting, Pittsburgh, PA, (2008)

    Google Scholar 

  72. R. Gross, P. Heptonstall, M. Leach et al., Renewable and the grid: understanding intermittency. Energy 160, 31–41 (2007)

    Google Scholar 

  73. P. Kundur, Power System Stability and Control (McGraw-Hill, Englewood Cliffs, NJ, 1994)

    Google Scholar 

  74. H. Knudsen, J.N. Nielsen, Introduction to the Modelling of Wind Turbines, A Chapter, in Wind Power in Power Systems, ed. by T. Ackermann (Wiley, England, 2005)

    Google Scholar 

  75. J.J. Grainger, W.D. Stevenson, Power System Analysis (McGraw-Hill, New York, 1994)

    Google Scholar 

  76. H. Bevrani, Y. Mitani, K. Tsuji, Robust decentralized load-frequency control using an iterative linear matrix inequalities algorithm. IEEE Proc. Gener. Transm. Distrib. 150(3), 347–354 (2004)

    Article  Google Scholar 

  77. H. Bevrani, T. Hiyama, On load-frequency regulation with time delays: design and real-time implementation. IEEE Trans. Energy Convers. 24(1), 292–300 (2009)

    Article  Google Scholar 

  78. H. Bevrani, Decentralized robust load-frequency control synthesis in restructured power systems. Ph.D dissertation, Osaka University, 2004

    Google Scholar 

  79. O.I. Elgerd, C. Fosha, Optimum megawatt-frequency control of multiarea electric energy systems. IEEE Trans. Power Apparatus Syst. vol. PAS-89, no. 4, pp. 556–563 (1970)

    Google Scholar 

  80. P.M. Anderson, M. Mirheydar, A low-order system frequency response model. IEEE Trans. Power Syst. 5(3), 720–729 (1990)

    Article  Google Scholar 

  81. UCTE (2004) UCTE appendix to policy P1: load-frequency control and performance. UCTE Operation Handbook

    Google Scholar 

  82. D.E. Clarke, Tasmanian experience with the use of df/dt triggering of UFLSS. Final Report, Transend Networks PTY LTD, no. D08/22185, 2008

    Google Scholar 

  83. NERC Balance resources and demand standard ver. 2, (2007). http://www.nerc.com/filez/standards/Balance-Resources-Demand.html

  84. Y.V. Makarov, V.I. Reshetov, V.A. Stroev et al., Blackout prevention in the United States, Europe and Russia. Proc. IEEE 93(11), 1942–1955 (2005)

    Article  Google Scholar 

  85. M. Ilic, P. Skantze, C.N. Yu et al., Power exchange for frequency control, in Proceedings of IEEE PES Winter Meeting, vol. 2, pp. 809–819 (1999)

    Google Scholar 

  86. P.M. Anderson, Power System Protection (IEEE Press/Wiley, New York, 1999)

    Google Scholar 

  87. IEEE guide for the application of protective relays used for abnormal frequency load shedding and restoration. Power Systems relaying Committee, in IEEE Std C37.117 (2007)

    Google Scholar 

  88. J.A. Momoh, Electric power distribution, automation, protection, and control (CRC Press, NW, 2008)

    Google Scholar 

  89. S. Heier, Grid Integration of Wind Energy Conversion Systems, 2nd edn. (Wiley, England, 2006)

    Google Scholar 

  90. P.M. Anderson, A.A. Fouad, Power System Control and Stability (IEEE Press, New York, 1994)

    Google Scholar 

  91. M. Arita, A. Yokoyama, Y. Tada, Evaluation of battery system for frequency control in interconnected power system with a large penetration of wind power generation. Presented at the international conference on power system technology (2006)

    Google Scholar 

  92. H. Bevrani, M. Gholami, N. Hajimohammadi, Microgrid emergency control and protection: key issues and new perspectives. Int. J. Energy Optim. Eng. 2(1), 78–100 (2013)

    Google Scholar 

  93. IEEE RTS Task Force of APM Subcommittee, The IEEE reliability test system-1996. in IEEE Transactions on Power Systems, vol. 14, No. 3, pp. 1010–1020, Aug 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Bevrani .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bevrani, H. (2014). Renewable Energy Options and Frequency Regulation. In: Robust Power System Frequency Control. Power Electronics and Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-07278-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07278-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07277-7

  • Online ISBN: 978-3-319-07278-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics