Advertisement

Frequency Control in Deregulated Environment

  • Hassan BevraniEmail author
Chapter
  • 2.8k Downloads
Part of the Power Electronics and Power Systems book series (PEPS)

Abstract

This chapter addresses the frequency control issue in the restructured power systems. A brief description on frequency regulation markets is given. The impacts of power system restructuring on frequency regulation are simulated, and a dynamical model to adapt a classical frequency response model to the changing environment of power system operation is introduced. An agent-based LFC in a deregulated environment is proposed, and real-time laboratory tests have been performed. Furthermore, two frequency control synthesis approaches using a real values-based learning classifier system and a bisection search method are addressed; and finally, a design framework for economic frequency control is explained.

Keywords

Deregulation AGC market Regulation power Bilateral contract Vertically integrated utility Market operator IPP ISO NERC ENTSO-E FERC H-PI control H2/H-PI control Aagent-based control Participation factor Intelligent LFC XCSR Generation participation matrix (GPM) Bisection search method Economic dispatch GA Multiobjective optimization 

References

  1. 1.
    IEEE System Dynamics Performance Committee Panel Session, Frequency control requirement, trends and challenges in new utility environment, in Proceeding of IEEE PES Winter Meeting, New York, NY, 1999Google Scholar
  2. 2.
    CIGRE SCTF 38.02.14, Analysis and modelling needs of power systems under major frequency disturbances, CIGRE Technical Brochure, No. 148, 1999Google Scholar
  3. 3.
    H. Bevrani, Decentralized Robust load–frequency control synthesis in restructured power systems. PhD dissertation, Osaka University, Japan, 2004Google Scholar
  4. 4.
    X. Yu, K. Tomosovic, Application of linear matrix inequalities for load frequency control with communication delays. IEEE Trans. Power Syst. 19(3), 1508–1515 (2004)CrossRefGoogle Scholar
  5. 5.
    J. Kumar, N.G.K. Hoe, G.B. Sheble, AGC simulator for price-based operation, Part I: A model. IEEE Trans. Power Syst. 2(12), 527–532 (1997)Google Scholar
  6. 6.
    J. Kumar, N.G.K. Hoe, G.B. Sheble, AGC simulator for price-based operation, Part II: Case study results. IEEE Trans. Power Syst. 2(12), 533–538 (1997)Google Scholar
  7. 7.
    H. Bevrani, T. Hiyama, Intelligent Automatic Generation Control. (CRC Press, USA, 2011)Google Scholar
  8. 8.
    M. Shahidehpour, H. Yamin, Z. Li, Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management. (Wiley. New York, 2002)Google Scholar
  9. 9.
    Y. Rebours, A comprehensive assessment of markets for frequency and voltage control ancillary services. PhD dissertation, The University of Manchester (2008)Google Scholar
  10. 10.
    Working Paper on Standardized Transmission Services and Wholesale Market Design (2002). http://www.ferc.fed.us
  11. 11.
    F. Daneshfar, H. Bevrani, Mutliobjective design of load frequency control using genetic algorithms. Int. J. Electr. Power Energy Syst. 42, 257–263 (2012)CrossRefGoogle Scholar
  12. 12.
    H. Bevrani, T. Hiyama, On load–frequency regulation with time delays: design and realtime implementation. IEEE Trans. Energy Convers. 24(1), 292–300 (2009)CrossRefGoogle Scholar
  13. 13.
    C.-K. Zang, L. Jiang, Q.H. Wu, Y. He, M. Wu, Delay-dependent robust load frequency control for time delay power system. IEEE Trans. Power Syst. 28(3), 2192–2201 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Bindner, O. Gehrke, System control and communication. Riso energy report, no. 8, pp. 39–42, (2009), http://130.226.56.153/rispubl/reports/ris-r-1695.pdf
  15. 15.
    Y. Rebours, D. Kirschen, A survey of definitions and specifications of reserve services. Technical report, The University of Manchester (2005), http://www.eee.manchester.ac.uk/research/groups/eeps/publications/reportstheses/aoe/rebours%20et%20al_tech%20rep_2005B.pdf
  16. 16.
    H. Bevrani,Robust Power System Frequency Control, 1st edn. (Springer, USA, 2009)Google Scholar
  17. 17.
    K. Bhattacharya, M.H.J. Bollen, J.E. Daalder, Operation of Restructured Power Systems. (Kluwer Academic Publishers, Boston, 2001)Google Scholar
  18. 18.
    G.A. Chown, B. Wigdorowitz, A methodology for the redesign of frequency control for AC networks. IEEE Trans. Power Syst. 19(3), 1546–1554 (2004)CrossRefGoogle Scholar
  19. 19.
    R.D. Chritie, A. Bose, Load frequency control issues in power system operation after deregulation. IEEE Trans. Power Syst. 11(3), 1191–1200 (1996)CrossRefGoogle Scholar
  20. 20.
    B. Delfino, F. Fornari, S. Massucco, Load–frequency control and inadvertent interchange evaluation in restructured power systems. IEE Proc. Gener. Transm. Distrib. 149(5), 607–614 (2002)CrossRefGoogle Scholar
  21. 21.
    ENTSO-E Doc.: ENTSO-E draft network code on load-frequency control and reserves, (2003) www.entsoe-eu, Accessed 17 Jan 2013
  22. 22.
    A.P.S. Meliopouls, G.J. Cokkinides, A.G. Bakirtzis, Load–frequency control service in a deregulated environment. Decis. Support Syst. 24, 243–250 (1999)CrossRefGoogle Scholar
  23. 23.
    B. Roffel, W.W. deBoer, Analysis of power and frequency control requirements in view of increased decentralized production and market liberalization. Control Eng. Pract. 11, 367–375 (2003)Google Scholar
  24. 24.
    UCTE Operation Handbook (2009), http://www.ucte.org
  25. 25.
    H. Bevrani, Y. Mitani, K. Tsuji, On robust load–frequency regulation in a restructured power system. IEE J. Trans. Power Energy 124-B(2), 190–198 (2004)Google Scholar
  26. 26.
    PSERC Project Report, Agent modelling for integrated power systems (2008), http://www.pserc.org
  27. 27.
    H. Singh, Auctions for ancillary services. Decis. Support Syst. 24(3–4), 183–191 (1999)CrossRefGoogle Scholar
  28. 28.
    G. Chicco, G. Gross, Competitive acquisition of prioritizable capacity-based ancillary services. IEEE Trans. Power Syst. 19(1), 569–576 (2004)CrossRefGoogle Scholar
  29. 29.
    F.D. Galiana, F. Bouffard, J.M. Arroyo, J.F. Restrepo, Scheduling and pricing of coupled energy and primary, secondary, and tertiary reserves. Proc. IEEE 93(11), 1970–1983 (2005)CrossRefGoogle Scholar
  30. 30.
    J.J. Ford, H. Bevrani, G. Ledwich, Adaptive load shedding and regional protection. Int. J. Electr. Power Energy Syst. 31, 611–618 (2009)CrossRefGoogle Scholar
  31. 31.
    H. Bevrani, G. Ledwich, J.J. Ford, Z.Y. Dong, On power system frequency control in emergency conditions. J Electr. Eng. Technol. 3(4), 499–508 (2008)CrossRefGoogle Scholar
  32. 32.
    V. Donde, M.A. Pai, I.A. Hiskens, Simulation and optimization in a AGC system after deregulation. IEEE Trans. Power Syst. 16(3), 481–489 (2001)CrossRefGoogle Scholar
  33. 33.
    O.I. Elgerd, C. Fosha, Optimum megawatt-frequency control of multiarea electric energy systems. IEEE Trans. Power App. Syst., PAS-89(4), 556–563 (1970)Google Scholar
  34. 34.
    C. Fosha, O.I. Elgerd, The megawatt-frequency control problem: a new approach via optimal control. IEEE Trans. Power App. Syst. 89(4), 563–577 (1970)CrossRefGoogle Scholar
  35. 35.
    H. Bevrani, Y. Mitani, K. Tsuji, Robust decentralized AGC in a restructured power system. Energy Convers. Manage. 45, 2297–2312 (2004)CrossRefGoogle Scholar
  36. 36.
    H. Bevrani, Y. Mitani, K. Tsuji, Robust AGC: Traditional structure versus restructured scheme. IEEJ Trans. Power Energy 124-B(5), 751–761 (2004)Google Scholar
  37. 37.
    H. Bevrani, Y. Mitani, K. Tsuji, H. Bevrani, Bilateral-based robust load–frequency control. Energy Convers. Manage. 46, 1129–1146 (2005)CrossRefGoogle Scholar
  38. 38.
    PSERC Project Report, New system control methodologies: adapting AGC and other generator controls to the restructured environment (2005), http://www.pserc.org
  39. 39.
    J.M. Arroyo, A.J. Conejo, Optimal response of a power generator to energy, AGC, and reserve pool-based markets. IEEE Trans. Power Syst. 17(2), 404–410 (2002)CrossRefGoogle Scholar
  40. 40.
    H. Bevrani, Y. Mitani, K. Tsuji, Robust AGC: Traditional structure versus restructured scheme, IEE J. Trans. Power Energy, 124-B(5), 751–761 (2004)Google Scholar
  41. 41.
    N. Jaleeli, D.N. Ewart, L.H. Fink, Understanding automatic generation control. IEEE Trans. Power Syst. 7(3), 1106–1112 (1992)CrossRefGoogle Scholar
  42. 42.
    Ibraheem, P. Kumar, P. Kothari, Recent philosophies of automatic generation control strategies in power systems, IEEE Trans. Power Syst. 20(1), 346–357 (2005)Google Scholar
  43. 43.
    S.D.J. McArthur, E.M. Davidson, V.M. Catterson, A.L. Dimeas, N.D. Hatziargyriou, F. Ponci, T. Funabashi, Multi-agent systems for power engineering applications—Part I: concepts, applications and technical challenges. IEEE Trans. Power Syst. 22(4), 1743–1752 (2007)CrossRefGoogle Scholar
  44. 44.
    S.D.J. McArthur, E.M. Davidson, V.M. Catterson, A.L. Dimeas, N.D. Hatziargyriou, F. Ponci, T. Funabashi, Multi-agent systems for power engineering applications—Part II: technologies, standards and tools for multi-agent systems. IEEE Trans. Power Syst. 22(4), 1753–1759 (2007)CrossRefGoogle Scholar
  45. 45.
    NEMMCO, FCAS Constraints, NEMMCO (2006), http://www.nemmco.com.au/ancillary services/160–0272.pdf
  46. 46.
    P.M. Anderson, M. Mirheydar, A low-order system frequency response model. IEEE Trans. Power Syst. 5(3), 720–729 (1990)CrossRefGoogle Scholar
  47. 47.
    P.M. Anderson, A.A. Fouad, Power System Control and Stability (IEEE, Piscataway, 1994)Google Scholar
  48. 48.
    P.W. Sauer, M.A. Pai, Power System Dynamics and Stability (Stipes, Champaign, 2006)Google Scholar
  49. 49.
    K.R. Padiyar, Power Systems Dynamics: Stability and Control (Wiley, New York, 1999)Google Scholar
  50. 50.
    P. Kundur, Power System Stability and Control (McGraw-Hill, Englewood Cliffs, 1994)Google Scholar
  51. 51.
    J.S. Thorp, X. Wang, K.M. Hopkinson, et al., Agent technology applied to the protection of power systems, ed. by C. Rehtanz, Autonomous Systems and Intelligent Agents in Power System Control and Operation (Berlin, Springer, 2003), pp. 113–154Google Scholar
  52. 52.
    B.H. Bakken, K. Uhlen, Market based AGC with online bidding of regulating reserves. Proc. IEEE PES Summer Meet. 2, 848–853 (2001)CrossRefGoogle Scholar
  53. 53.
    V. Julian, V. Botti, Developing real-time multi-agent systems. Integr. Comput-Aided Eng. 11(2), 135–149 (2004)Google Scholar
  54. 54.
    Foundation for Intelligent Physical Agents (FIPA), Agent Management Specification (2002) http://www.fipa.org/specs/fipa00023/SC00023J.html
  55. 55.
    S. Bhowmik, K. Tomosovic, A. Bose, Communication models for third party load frequency control. IEEE Trans. Power Syst. 19(1), 543–548 (2004)CrossRefGoogle Scholar
  56. 56.
    A.J. Wood, B.F. Wollenberg, Power Generation Operation and Control (Wiley, NewYork, 1984)Google Scholar
  57. 57.
    H. Bevrani, T. Hiyama, A control strategy for LFC design with communication delays, in Proceedings of the Seventh International Power Engineering Conference (IPEC), Singapore, 2005Google Scholar
  58. 58.
    H. Bevrani, Y. Mitani, K. Tsuji, Robust decentralized load–frequency control using an iterative linear matrix inequalities algorithm. IEE Proc. Gener. Transm. Distrib. 150(3), 347–354 (2004)CrossRefGoogle Scholar
  59. 59.
    S.W. Wilson, Get Real! XCS with Continuous-Valued Inputs, ed. by P.L. Lanzi, W. Stolzmann, S,W. Wilson, Learning Classifier Systems. From Foundations to Applications, (Springer, Berlin, 2000), pp. 209–219Google Scholar
  60. 60.
    F. Daneshfar, H. Bevrani, A new intelligent LFC design in a deregulated environment, in 20th Iranian Conf. on Electrical Engineering ICEE-2012, Tehran, Iran, 2012Google Scholar
  61. 61.
    F. Daneshfar, H. Bevrani, An optimization method for LFC design in restructured power systems, in 20th Iranian Conference on Electrical Engineering ICEE-2012, Tehran, Iran, 2012Google Scholar
  62. 62.
    L. Bull, Learning Classifier Systems: A Brief Introduction (Faculty of Computing Engineering & Mathematical Sciences, University of the West of England, England, 2003)Google Scholar
  63. 63.
    S.W. Wilson, ZCS: A zeroth order classifier system. Evolutionary Comput. 2, 1–18 (1994)Google Scholar
  64. 64.
    P.L. Lanzi, W. Stolzmann, S.W. Wilson, Learning Classifier Systems: From Foundations to Applications. (Springer, Boston, 2000)Google Scholar
  65. 65.
    S.W. Wilson, Classifier fitness based on accuracy. Evol. Comput. 3, 149–175 (1995)CrossRefGoogle Scholar
  66. 66.
    S.W. Wilson, Get Real! XCS with Continuous-Valued Inputs, Learning Classifier System (Springer, Boston, 2000)Google Scholar
  67. 67.
    O. Sigaud, S.W. Wilson, Learning classifier systems: a survey, Soft Computing—A Fusion of Foundations, Methodologies and Applications, vol. 11, 2007Google Scholar
  68. 68.
    F. Carl-Erik, Numerical Mathematics, Theory and Computer Applications. The Benjamin Publishing Company, Menlo Park (1985)Google Scholar
  69. 69.
    R.W. Hamming, Numerical Methods for Scientists and Engineers (Mc Graw-Hill, New York, 1962)zbMATHGoogle Scholar
  70. 70.
    W.R. Barcelo, P. Rastgoufard, Dynamic economic dispatch using the extended security constrained economic dispatch algorithm. IEEE Trans. Power Syst. 12, 961–967 (1997)CrossRefGoogle Scholar
  71. 71.
    J.Y. Fan, L. Zhang, Real-time economic dispatch with line flow and emission constraints using quadratic programming. IEEE Trans. Power Syst. 13, 320–325 (1998)CrossRefGoogle Scholar
  72. 72.
    Milan S. Ćalović, Advanced automatic generation control with automatic compensation of tie-line losses. Electr. Power Compon. Syst. 40, 807–828 (2012)CrossRefGoogle Scholar
  73. 73.
    X.S. Han, H.B. Gooi, D.S. Kirschen, Dynamic economic dispatch: feasible and optimal solutions. IEEE Trans. Power Syst. 16, 22–28 (2001)CrossRefGoogle Scholar
  74. 74.
    H. Mukai, J. Singh, J.H. Spare, J. Zaborszky. A reevaluation of the normal operating state control of the power system using computer control and system theory: part ii: dispatch targeting. IEEE Trans Power Appar. Syst. PAS-100, 309–317 (1981)Google Scholar
  75. 75.
    J.Z. Zhu, C.S. Chang, G.Y. Xu, A new model and algorithm of secure and economic automatic generation control. Electr. Power Syst. Res. 45, 119–127 (1998)CrossRefGoogle Scholar
  76. 76.
    H. Golpira, H. Bevrani, A framework for economic load frequency control design using modified multi-objective genetic algorithm. Electr. Power Compon. Syst. (In Press)Google Scholar
  77. 77.
    L.C. Saikia, N. Sinha, J. Nanda, Maiden application of bacterial foraging based fuzzy IDD controller in AGC of a multi-area hydrothermal system. Int. J. Elect. Power Syst. 45, 98–106 (2013)CrossRefGoogle Scholar
  78. 78.
    H. Golpîra, H. Bevrani, H. Golpîra, Application of GA optimization for automatic generation control design in an interconnected power system. Energy Convers. Manage. 52, 2247–2255 (2011)CrossRefGoogle Scholar
  79. 79.
    H. Golpîra, H. Bevrani, H. Golpîra, Effect of physical constraints on the AGC dynamic behavior in an interconnected power system. Int. J. Adv. Mech. Syst. 30, 79–87 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of KurdistanSanandajIran

Personalised recommendations