Application of μ-Theory and MPC in Frequency Control Synthesis

  • Hassan BevraniEmail author
Part of the Power Electronics and Power Systems book series (PEPS)


This chapter presents the application of structured singular value theory (μ) for robust decentralized load frequency control design. System uncertainties and practical constraints are properly considered during a synthesis procedure. The robust performance is formulated in terms of the structured singular value for measuring of control performance within a systematic approach. In this chapter, a decentralized robust model predictive control (MPC)‐based frequency control design is introduced. The MPC controller uses a feed‐forward control strategy to reject the impact of load change. The proposed controller is applied to a three control area power system and the obtained results are compared with the application of ILMI‐based robust PI controller.


LFC synthesis Structured singular value theory Model predictive control (MPC) Robust control Fictitious uncertainty Nominal model Decentralized control Sequential design D-K iterations M-∆ configuration Uncertainty weight Order reduction 


  1. 1.
    M. Chiu, Y. Arkun, A methodology for sequential design of robust decentralized control systems. Automatica 28, 997–1001 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    J. C. Doyle, Analysis of feedback systems with structured uncertainties. IEE Proc. D 129, 242–250 (1982)Google Scholar
  3. 3.
    M. Djukanovic, M. Khammash, V. Vittal, Structured singular value theory based stability robustness of power systems, in Proceedings of IEEE Conference on Decision and Control, pp. 2702–2707, 1997Google Scholar
  4. 4.
    H. Bevrani, Robust load frequency controller in a deregulated environment: A μ-synthesis approach, in Proceedings of IEEE International Conference on Control applications, pp. 616–621, 1999Google Scholar
  5. 5.
    S. Skogestad, I. Postlethwaite, Multivariable Feedback Control (Wiley, New York, 2000), pp. 397–448Google Scholar
  6. 6.
    M. Hovd, S. Skogestad, Sequential design of decentralised controllers. Automatica 30, 1601–1607 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    G.J. Balas, J.C. Doyle, K. Glover, A. Packard, R. Smith, μ-Analysis and Synthesis Toolbox for Use with MATLAB (The MathWorks, Natick, 1995)Google Scholar
  8. 8.
    M. Djukanovic, M. Khammash, V. Vittal, Sequential synthesis of structured singular value based decentralized controllers in power systems. IEEE Trans. Power Syst. 14, 635–641 (1999)CrossRefGoogle Scholar
  9. 9.
    T. Hiyama, Design of decentralised load-frequency regulators for interconnected power systems. IEE Proc. C 129, 17–23 (1982)Google Scholar
  10. 10.
    T.C. Yang, H. Cimen, Q.M. Zhu, Decentralised load frequency controller design based on structured singular values. IEE Proc. Gener. Transm. Distrib. 145(1), 7–14 (1998)CrossRefGoogle Scholar
  11. 11.
    T.C. Yang, Z.T. Ding, H. Yu, Decentralized power system load frequency control beyond the limit of diagonal dominance. Electr. Power Energy Syst. 24, 173–184 (2002)CrossRefGoogle Scholar
  12. 12.
    H. Bevrani, Y. Mitani, K. Tsuji, Robust load frequency regulation in a new distributed generation environment, in Proceedings of 2003 IEEE-PES General Meeting (CD Record), Toronto, Canada, 2003Google Scholar
  13. 13.
    L. Wang, Model Predictive Control System Design and Implementation Using MATLAB (Springer, New York, 2008)Google Scholar
  14. 14.
    A.N. Venkat, I.A. Hiskens, J.B. Rawlings, S.J. Wright, Distributed MPC strategies with application to power system automatic generation control. IEEE Trans. Control Syst. Technol. 16(6), 1192–1206 (2008)CrossRefGoogle Scholar
  15. 15.
    M. Shiroei, A.M. Ranjbar, T. Amraee, A functional model predictive control approach for power system load frequency control considering generation rate constraint. Euro. Trans. Electr. Power (2011). doi: 10.1002/etep.653 Google Scholar
  16. 16.
    T.H. Mohammed, H. Bevrani, A.A. Hassan, T. Hiyama, Decentralized model predictive based load frequency control in an interconnected power system. Energy Convers. Manag. 52(2), 1208–1214 (2011)CrossRefGoogle Scholar
  17. 17.
    Q. Shafiee, H. Bevrani, Power System Load-Frequency Predictive Control, Technical report (in Persian), University of Kurdistan, Sanandaj, Iran, June 2010Google Scholar
  18. 18.
    H. Mohamed, J. Morel, H. Bevrani, A.A. Hassan, T. Hiyama, Model predictive based load frequency control design concerning wind turbines. Int. J. Electr. Power Energy Syst. 43(1), 859–867 (2012)CrossRefGoogle Scholar
  19. 19.
    T.H. Mohamed, J. Morel, H. Bevrani, A.A. Hassan, Y.S. Mohamed, T. Hiyama, Decentralized model predictive-based load-frequency control in an interconnected power system concerning wind turbines. IEEJ Trans. Electr. Electron. Eng. 7, 487–494 (2012)CrossRefGoogle Scholar
  20. 20.
    Q. Shafiee, A Morattab, H. Bevrani, Decentralized model predictive load-frequency control for multi-are interconnected power systems, in 19th Iranian Conference on Electrical Engineering ICEE-2011, Tehran, Iran, 2011Google Scholar
  21. 21.
    A Morattab, Q. Shafiee, H. Bevrani, Decentralized model predictive load frequency control of deregulated power systems in tough situations, in IEEE PES Trondheim PowerTech 2011, Trondheim, NorwayGoogle Scholar
  22. 22.
    J. M. Maciejowski, Predictive Control with Constraints (Prentice Hall, London, 2002)Google Scholar
  23. 23.
    M. Saaj, B. Bandyopadhyay, H. Unbehauen, A new algorithm for discrete-time sliding-mode control using fast output sampling feedback. IEEE Trans. Ind. Electron. 49(3), 518–523 (2002)Google Scholar
  24. 24.
    K. Vrdoljak, N. Peric, I. Petrovic, Sliding mode based load-frequency control in power systems. Electr. Power Syst. Res. 80(5), 514–527 (2010)CrossRefGoogle Scholar
  25. 25.
    H. Bevrani, Y. Mitani, K. Tsuji, Robust decentralized Load Frequency Control using an iterative linear matrix inequalities algorithm. IEE Proc. Gener. Transm. Distrib. 151(3), 347–354 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of KurdistanSanandajIran

Personalised recommendations