Robust Multi-objective Control-Based Frequency Regulation

  • Hassan BevraniEmail author
Part of the Power Electronics and Power Systems book series (PEPS)


This chapter formulates the proportional integral‐based frequency control problem with communication delays as a robust static output feedback optimization control problem. The H2/H control is used via an iterative linear matrix inequalities algorithm to approach a suboptimal solution for the assumed design objectives. The proposed method was applied to a control area power system through a laboratory real‐time experiment. Finally, the genetic algorithm, as a well‐known optimization technique, is successfully used for tuning of PI‐based frequency control loop by tracking the robust performance indices obtained by mixed H2/H control design.


Frequency regulation LFC Mixed H2/H∞ control H∞ control Multiobjective control PI control H2 norm H∞ norm Uncertainty Robust control LMI H∞-SOF Performance index Optimization Genetic algorithm Performance tracking 


  1. 1.
    H. Bevrani, Decentralized Robust Load–Frequency Control Synthesis in Restructured Power Systems. PhD Dissertation, Osaka University, 2004Google Scholar
  2. 2.
    P.P. Khargonekar, M.A. Rotea, Mixed H2/H∞ control: a convex optimization approach. IEEE Trans. Autom. Control 39, 824–837 (1991)CrossRefMathSciNetGoogle Scholar
  3. 3.
    C.W. Scherer, Multiobjective H2/H∞ control. IEEE Trans. Autom. Control 40, 1054–1062 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    C.W. Scherer, P. Gahinet, M. Chilali, Multiobjective output-feedback control via LMI optimization. IEEE Trans. Autom. Control 42(7), 896–911 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    P. Gahinet, A. Nemirovski, A.J. Laub, M. Chilali, LMI Control Toolbox (The MathWorks, Natick, 1995)Google Scholar
  6. 6.
    A.J. Wood, B.F. Wollenberg, Power Generation Operation and Control (Wiley, NewYork, 1984)Google Scholar
  7. 7.
    F. Zheng, Q.G. Wang, H.T. Lee, On the design of multivariable PID controllers via LMI approach. Automatica 38, 517–526 (2002)CrossRefGoogle Scholar
  8. 8.
    M. Djukanovic, M. Khammash, V. Vittal, Sequential synthesis of structured singular value based decentralized controllers in power systems. IEEE Trans. Power Syst. 4(2), 635–641 (1999)CrossRefGoogle Scholar
  9. 9.
    M. Rios, N. Hadjsaid, R. Feuillet, A. Torres, Power system stability robustness evaluation by μ analysis. IEEE Trans. Power Syst. 14(2), 648–653 (1999)CrossRefGoogle Scholar
  10. 10.
    P. Gahinet, M. Chilali, H∞-design with pole placement constraints. IEEE Trans. Autom. Control 41(3), 358–367 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    H. Bevrani, T. Hiyama, Robust decentralized PI-based LFC design for time-delay power systems. Energy Convers. Manage. 49, 193–204 (2008)CrossRefGoogle Scholar
  12. 12.
    G.J. Silva, A. Datta, S.P. Bhattacharyya, PID Controllers for Time-Delay Systems (Birkhauser, Boston, 2005)zbMATHGoogle Scholar
  13. 13.
    K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Birkhauser, Boston, 2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    M.S. Mahmoud, Robust Control and Filtering for Time-Delay Systems (Marcel Dekker, New York, 2000)zbMATHGoogle Scholar
  15. 15.
    J. Aweya, D.Y. Montuno, M. Ouellette, Effects of control loop delay on the stability of a rate control algorithm. Int. J. Commun. Syst. 17, 833–850 (2004)CrossRefGoogle Scholar
  16. 16.
    S.I. Niculescu, Delay Effects on Stability–A Robust Control Approach (Springer, Berlin, 2001)zbMATHGoogle Scholar
  17. 17.
    H. Bevrani, Y. Mitani, K. Tsuji, Robust decentralized load–frequency control using an iterative linear matrix inequalities algorithm. IEEE Proc. Gener. Transm. Distrib. 150(3), 347–354 (2004)CrossRefGoogle Scholar
  18. 18.
    H. Bevrani, T. Hiyama, Intelligent Automatic Generation Control (CRC Press, New York, 2011)Google Scholar
  19. 19.
    C.M. Fonseca, P.J. Fleming, Multiobjective optimization and multiple constraint handling with evolutionary algorithms–part I: a unified formulation. IEEE Trans. Syst. Man Cybern. A, 28(1), 26–37 (1995)Google Scholar
  20. 20.
    D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Wesley, Reading, 1989)zbMATHGoogle Scholar
  21. 21.
    J.F. Whidborne, R.S.H. Istepanian, Genetic algorithm approach to designing finite-precision controller structures. IEE Proc. Control Theory Appl. 148(5), 377–382 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of KurdistanSanandajIran

Personalised recommendations