Advertisement

Robust PI-Based Frequency Control

  • Hassan BevraniEmail author
Chapter
  • 2.8k Downloads
Part of the Power Electronics and Power Systems book series (PEPS)

Abstract

This chapter provides a new decentralized method to design robust proportional‐integral (PI)‐based LFC using a developed iterative linear matrix inequalities (ILMI) algorithm. For this purpose the H static output feedback control (SOF) is applied. Then the chapter is focused on robust PI PI‐based LFC problem with communication delays in a multi‐area power system. The proposed methods are applied to multi-area power system examples with different LFC schemes, and the closed‐loop system is tested under serious load change scenarios.

Keywords

PI control Secondary frequency control LFC LMI Iterative LMI Robust control Static output feedback H control Robust stability Robust performance Performance index Stabilization Weights selection Dynamic control Load disturbance Time delay Real-time simulation 

References

  1. 1.
    T. Hiyama, Design of decentralised load–frequency regulators for interconnected power systems. IEE Proc. Pt. C 129, 17–23 (1982)Google Scholar
  2. 2.
    A. Feliachi, Optimal decentralized load frequency control. IEEE Trans. Power Syst. PWRS-2, 379–384 (1987)Google Scholar
  3. 3.
    C.M. Liaw, K.H. Chao, On the design of an optimal automatic generation controller for interconnected power systems. Int. J. Control 58, 113–127 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Y. Wang, R. Zhou, C. Wen, Robust load–frequency controller design for power systems. IEE Proc. Pt. C 140(1), 11–16 (1993)Google Scholar
  5. 5.
    K.Y. Lim, Y. Wang, R. Zhou, Robust decentralized load–frequency control of multi-area power systems. IEE Proc. Gener. Transm. Distrib. 143(5), 377–386 (1996)CrossRefGoogle Scholar
  6. 6.
    T. Ishi, G. Shirai, G. Fujita, Decentralized load frequency based on H control. Electr. Eng. Jpn 136(3), 28–38 (2001)CrossRefGoogle Scholar
  7. 7.
    M.H. Kazemi, M. Karrari, M.B. Menhaj, Decentralized robust adaptive-output feedback controller for power system load frequency control. Electr. Eng. J. 84, 75–83 (2002)CrossRefGoogle Scholar
  8. 8.
    M.K. El-Sherbiny, G. El-Saady, A.M. Yousef, Efficient fuzzy logic load–frequency controller. Energy Convers. Manage. 43, 1853–1863 (2002)CrossRefGoogle Scholar
  9. 9.
    D. Rerkpreedapong, A. Hasanovic, A. Feliachi, Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Trans. Power Syst. 18(2), 855–861 (2003)CrossRefGoogle Scholar
  10. 10.
    H. Bevrani, Y. Mitani, K. Tsuji, Sequential design of decentralized load–frequency controllers using μ-synthesis and analysis. Energy Convers. Manage. 45(6), 865–881 (2004)CrossRefGoogle Scholar
  11. 11.
    T.C. Yang, H. Cimen, Q.M. Zhu, Decentralised load frequency controller design based on structured singular values. IEE Proc. Gener. Transm. Distrib 145(1), 7–14 (1998)CrossRefGoogle Scholar
  12. 12.
    H. Bevrani, Application of Kharitonov’s theorem and its results in load–frequency control design. J. Electr. Sci. Technol.-BARGH (in Persian) 24, 82–95 (1998)Google Scholar
  13. 13.
    D. Bernstein, Some open problems in matrix theory arising in linear systems and control. Linear Algebra Appl. 162–164, 409–432 (1992)CrossRefGoogle Scholar
  14. 14.
    V. Blondel, M. Gevers, A. Lindquist, Survey on the state of systems and control. Eur. J. Control 1, 5–23 (1995)CrossRefzbMATHGoogle Scholar
  15. 15.
    V.L. Syrmos, C.T. Abdallah, P. Dorato, K. Grigoriadis, Static output feedback: A survey. Automatica 33(2), 125–137 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    F. Leibfritz, Static output feedback design problems. PhD dissertation, Trier University (1998)Google Scholar
  17. 17.
    E. Prempain, I. Postlethwaite, Static output feedback stabilization with H performance for a class of plants. Syst. Control Lett. 43, 159–166 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    T. Iwasaki, R.E. Skelton, J.C. Geromel, Linear quadratic suboptimal control with static output feedback. Syst. Control Lett. 23, 421–430 (1994)CrossRefMathSciNetGoogle Scholar
  19. 19.
    P. Gahinet, P. Apkarian, A linear matrix inequality approach to H control. Int. J. Robust Nonlinear Control 4, 421–448 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    J.C. Geromel, C.C. Souza, R.E. Skeltox, Static output feedback controllers: Stability and convexity. IEEE Trans. Autom. Control 42, 988–992 (1997)CrossRefzbMATHGoogle Scholar
  21. 21.
    T. Iwasaki, R.E. Skelton, All controllers for the general H control problem: LMI existence conditions and state space formulas. Automatica 30, 1307–1317 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    K.C. Goh, M.G. Safanov, G.P. Papavassilopoulos, A global optimization approach for the BMI problem. in Proceeding IEEE CDC Conference 2009–2014 (1994)Google Scholar
  23. 23.
    Y.Y. Cao, Y.X. Sun, W.J. Mao, Static output feedback stabilization: An ILMI approach. Automatica 34(12), 1641–1645 (1998)CrossRefzbMATHGoogle Scholar
  24. 24.
    R.E. Skelton, J. Stoustrup, T. Iwasaki, The H control problem using static output feedback. Int. J. Robust Nonlinear Control 4, 449–455 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    P. Gahinet, A. Nemirovski, A.J. Laub, M. Chilali, LMI Control Toolbox (The MathWorks, Natick, 1995)Google Scholar
  26. 26.
    H. Bevrani, T. Hiyama, Y. Mitani, K. Tsuji, Automatic generation control: A decentralized robust approach. Intell. Autom. Soft Comput. J. 13(3), 273–287 (2007)CrossRefGoogle Scholar
  27. 27.
    M.S. Mahmoud, Robust Control and Filtering for Time-Delay Systems (Marcel Dekker, New York, 2000)zbMATHGoogle Scholar
  28. 28.
    J. Aweya, D.Y. Montuno, M. Ouellette, Effects of control loop delay on the stability of a rate control algorithm. Int. J. Commun. Syst. 17, 833–850 (2004)CrossRefGoogle Scholar
  29. 29.
    S.I. Niculescu, Delay Effects on Stability—A Robust Control Approach (Springer, London, 2001)zbMATHGoogle Scholar
  30. 30.
    S. Bhowmik, K. Tomosovic, A. Bose, Communication models for third party load frequency control. IEEE Trans. Power Syst. 19(1), 543–548 (2004)CrossRefGoogle Scholar
  31. 31.
    T. Hiyama, T. Nagata, T. Funabashi, Multi-agent based automatic generation control of isolated stand alone power system. Proc. Int. Conf. Power Syst. Technol. 1, 139–143 (2004)Google Scholar
  32. 32.
    X. Yu, K. Tomosovic, Application of linear matrix inequalities for load frequency control with communication delays. IEEE Trans. Power Syst. 19(3), 1508–1515 (2004)CrossRefGoogle Scholar
  33. 33.
    H. Bevrani, T. Hiyama, Multiobjective PI/PID control design using an iterative matrix inequalities algorithm. Int. J. Control Autom. Syst. 5(2), 117–127 (2007)Google Scholar
  34. 34.
    H. Bevrani, T. Hiyama, Robust decentralized PI based LFC design for time-delay power systems. Energy Convers. Manage. 49, 193–204 (2008)CrossRefGoogle Scholar
  35. 35.
    S. Fukushima, T. Sasaki, S. Ihara, et al., Dynamic analysis of power system frequency control, in Proceedings of CIGRE 2000 Session, No. 38–240, Paris, 2000Google Scholar
  36. 36.
    T. Sasaki, K. Enomoto, Dynamic analysis of generation control performance standards. IEEE Trans. Power Syst. 17(3), 806–811 (2002)CrossRefGoogle Scholar
  37. 37.
    S. Boyd, L. El. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in Systems and Control Theory, vol. 15. (SIAM Books, Philadelphia, 1994)Google Scholar
  38. 38.
    B. Chaudhuri, R. Majumder, B.C. Pal, Wide-area measurement based stabilizing control of power system considering signal transmission delay. IEEE Trans. Power Syst. 19(4), 1971–1979 (2004)CrossRefGoogle Scholar
  39. 39.
    A.F. Snyder et al., Delay-input wide-area stability control with synchronized phasor measurements. Proc. IEEE PES Summer Meet. 2, 1009–1014 (2000)Google Scholar
  40. 40.
    H. Wu, K.S. Tsakalis, G.T. Heydt, Evaluation of time delay effects to wide-area power system stabilizer design. IEEE Trans. Power Syst. 19(4), 1971–1979 (2004)CrossRefGoogle Scholar
  41. 41.
    B. Pal, B. Chaudhuri, Robust Control in Power systems (Springer, New York, 2005)Google Scholar
  42. 42.
    P. Gahinet, M. Chilali, H-design with pole placement constraints. IEEE Trans. Autom. Control 41(3), 358–367 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  43. 43.
    N. Jaleeli, D.N. Ewart, L.H. Fink, Understanding automatic generation control. IEEE Trans. Power Syst. 7(3), 1106–1112 (1992)CrossRefGoogle Scholar
  44. 44.
    T. Hiyama, Optimization of discrete-type load–frequency regulators considering generation rate constraints. IEE Proc. C Gener. Transm. Distrib. 129, 285–289 (1982)CrossRefGoogle Scholar
  45. 45.
    K.S. Narendra, A.M. Annaswamy, Stable Adaptive Systems (Prentice-Hall, Englewood Cliffs, 1989)zbMATHGoogle Scholar
  46. 46.
    H. Bevrani, T. Hiyama, A robust solution for PI-based LFC problem with communication delays. IEE J. Trans. Power Energy 25(12), 1188–1193 (2005)CrossRefGoogle Scholar
  47. 47.
    Y. Kokai, I. Mtori, J. Kawakamt, Multiprocessor based generator module for a real-time power system simulator. IEEE Trans. Power Syst. 3(4), 1633–1639 (1988)CrossRefGoogle Scholar
  48. 48.
    Y. Tamura, E. Dan, I. Horie, Y. Nakanishi, S. Yokokawa, Development of power system simulator for research and education. IEEE Trans. Power Syst. 5(2), 492–498 (1990)CrossRefGoogle Scholar
  49. 49.
    J. Arai, Y. Noro, An induction machine model for an analog power system simulator. IEEE Trans. Power Syst. 8(4), 1478–1482 (1993)CrossRefGoogle Scholar
  50. 50.
    T. Mori, H. Kokame, Stability of x(t) = Ax(t) + Bx(t−τ). IEEE Trans. Autom. Control 34, 460–462 (1989)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of KurdistanSanandajIran

Personalised recommendations