Advertisement

Frequency Control and Real Power Compensation

  • Hassan BevraniEmail author
Chapter
  • 2.9k Downloads
Part of the Power Electronics and Power Systems book series (PEPS)

Abstract

This chapter introduces the subject of real power and frequency control, providing definitions and basic concepts. Overall view of frequency control loops including primary, secondary, tertiary, and emergency controls is given. Then the primary and secondary control loops are discussed in detail. The secondary control mechanism known as load-frequency control is first described for a single control area and then extended to a multiarea control system. Tie-line bias control and its application to a multiarea frequency control system are presented. Past achievements in the frequency control literature are briefly reviewed.

Keywords

Frequency control Real power compensation Primary control Secondary control Tertiary control Emergency control LFC Droop characteristic Frequency response model Synchronous generator Speed governor PI controller Swing equation Turbine-governor Inertia Rotating mass Multiarea power system Control area Area control error Participation factor Reserve power Control performance standards 

References

  1. 1.
    P. Kundur, Power System Stability and Control (McGraw-Hill, New York, 1994)Google Scholar
  2. 2.
    T.K. Nagsarkar, M.S. Sukhija, Power System analysis (Oxford University Press, New Delhi, 2007)Google Scholar
  3. 3.
    CIGRE Task Force 38.02.08, Long-Term Dynamics: Phase II, CIGRE Technical Brochure No. 102, 1995Google Scholar
  4. 4.
    A. Kurita, H. Okubo, K. Obi et al., Multiple time-scale dynamic simulation. IEEE Trans. Power Syst. 8, 216–223 (1993)Google Scholar
  5. 5.
    P.M. Anderson, A.A. Fouad, Power System Control and Stability, 2nd edn. (IEEE Press, USA, 2003)Google Scholar
  6. 6.
    NEMMCO, Frequency and Time Deviation Monitoring in NEM, vol. 2007. (NEMMCO, 2007). http://www.nemmco.com.au/powersystemops/250–0069.pdf
  7. 7.
    C. Luo, H. Golestani Far, H. Banakar et al., Estimation of wind penetration as limited by frequency deviation. IEEE Trans. Energy Convers. 22(3), 783–791 (2007)Google Scholar
  8. 8.
    N. Jaleeli, L.S. Vanslyck, NERC’s new control performance standards. IEEE Trans. Power Syst. 14(3), 1092–1099 (1999)Google Scholar
  9. 9.
    M. Yao, R.R. Shoults, R. Kelm, AGC logic based on NERC’s new control performance standard and disturbance control standard. IEEE Trans. Power Syst. 15(2), 852–857 (2000)Google Scholar
  10. 10.
    N. Hoonchareon, C.M. Ong, R.A. Kramer, Feasibility of decomposing ACE1 to identify the impact of selected loads on CPS1 and CPS2. IEEE Trans. Power Syst. 17(3), 752–756 (2002)Google Scholar
  11. 11.
    NERC, NERC Operating Manual, Princeton, NJ, 2002Google Scholar
  12. 12.
    H. Bevrani, M. Watanabe, Y. Mitani, Power System Monitoring and Control (Wiley-IEEE Press, New York, 2014)Google Scholar
  13. 13.
    P. Horacek, in Securing electrical power system operation. A book chapter in Springer Handbook of Automation, Nof (Ed.). (Springer, Berlin, 2009), pp. 1139–1163Google Scholar
  14. 14.
    N. Jalili, L.S. VanSlyck, Control Performance Standards and Procedures for Interconnected operation. EPRI TR-107813, 3555-10, Final Report, April 1997Google Scholar
  15. 15.
    I.P. Kumar, D.P. Kothari, Recent philosophies of automatic generation control strategies in power systems. IEEE Trans. Power Syst. 20(1), 346–357 (2005)Google Scholar
  16. 16.
    H. Bevrani, Robust Power System Frequency Control, 1st ed. (Springer, New York, 2009Google Scholar
  17. 17.
    C. Concordia, L.K. Kirchmayer, Tie line power and frequency control of electric power systems. Am. Inst. Electr. Eng. Trans. 72, 562–572 (1953) (Part II)Google Scholar
  18. 18.
    L.K. Kirchmayer, Economic Control of Interconnected Systems (Wiley, New York, 1959)Google Scholar
  19. 19.
    N. Cohn, Some aspects of tie-line bias control on interconnected power systems. Am. Inst. Electr. Eng. Trans. 75, 1415–1436 (1957)Google Scholar
  20. 20.
    N. Cohn, Considerations in the regulation of interconnected area. IEEE Trans. Power Syst. PAS-86, 1527–1538 (1967)Google Scholar
  21. 21.
    J.E. Van Ness, Root loci of load frequency control systems. IEEE Trans. Power App. Syst. PAS-82(5), 712–726 (1963)Google Scholar
  22. 22.
    IEEE Committee Report, Standard definitions of terms for automatic generation control on electric power systems. IEEE Trans. Power App. Syst. PAS-89, 1356–1364 (1970)Google Scholar
  23. 23.
    O.I. Elgerd, C. Fosha, Optimum megawatt-frequency control of multiarea electric energy systems. IEEE Trans. Power App. Syst. PAS-89(4), 556–563 (1970)Google Scholar
  24. 24.
    C. Fosha, O.I. Elgerd, The megawatt-frequency control problem: a new approach via optimal control. IEEE Trans. Power App. Syst. PAS-89(4), 563–577 (1970)Google Scholar
  25. 25.
    IEEE PES Committee Report, Dynamic models for steam and hydro-turbines in power system studies. IEEE Trans. Power App. Syst. PAS-92, 455–463 (1973)Google Scholar
  26. 26.
    O.I. Elgerd, Electric Energy System Theory: An Introduction, 2nd edn. (McGraw-Hill, New York, 1982Google Scholar
  27. 27.
    IEEE PES Working Group, Hydraulic turbine and turbine control models for system dynamic. IEEE Trans. Power Syst. PWRS-7(1), 167–174 (1992)Google Scholar
  28. 28.
    IEEE PES Committee Report, Current operating problems associated with automatic generation control. IEEE Trans. Power App. Syst. PAS-98, 88–96 (1979) Google Scholar
  29. 29.
    N. Jaleeli, D.N. Ewart, L.H. Fink, Understanding automatic generation control. IEEE Trans. Power Syst. 7(3), 1106–1112 (1992)Google Scholar
  30. 30.
    R.K. Green, Transformed automatic generation control. IEEE Trans. Power Syst. 11(4), 1799–1804 (1996)Google Scholar
  31. 31.
    H.G. Kwatny, K.C. Kalnitsky, A. Bhatt, An optimal tracking approach to load frequency control. IEEE Trans. Power App. Syst. PAS-94(5), 1635–1643 (1975)Google Scholar
  32. 32.
    C. Concordia, L.K. Kirchmayer, E.A. Szymanski, Effect of speed governor dead-band on tie-line power and frequency control performance. Am. Inst. Electr. Eng. Trans. 76, 429–435 (1957)Google Scholar
  33. 33.
    F.F. Wu, V.S. Dea, Describing-function analysis of automatic generation control system with governor deadband. Electr. Power Syst. Res. 1(2), 113–116 (1978)Google Scholar
  34. 34.
    B. Oni, H. Graham, L. Walker, Investigation of nonlinear tie-line bias control of interconnected power systems. IEEE Trans. Power App. Syst. PAS-100(5), 2350–2356 (1981)Google Scholar
  35. 35.
    S.C. Tripathy, T.S. Bhatti, C.S. Jha, O.P. Malik, G.S. Hope, Sampled data automatic generation control analysis with reheat steam turbines and governor dead band effects. IEEE Trans. Power App. Syst. PAS-103(5), 1045–1051 (1984)Google Scholar
  36. 36.
    T. Hiyama, Optimisation of discrete-type load-frequency regulators considering generation rate constraints. IEE Proc. Pt. C 129(6), 285–289 (1982)Google Scholar
  37. 37.
    T.C. Yang, H. Cimen, Q.M. Zhu, Decentralised load-frequency controller design based on structured singular values. Proc. Inst. Electr. Eng. C 145(1), 7–14 (1998)Google Scholar
  38. 38.
    K. Yamashita, H. Miyagi, Load-frequency self-tuning regulator for interconnected power systems with unknown deterministic load disturbances. Int. J. Control 49(5), 1556–1568 (1989)Google Scholar
  39. 39.
    A. Lee, H. Yee, C.Y. Teo, Self-tuning algorithm for automatic generation control in an interconnected power system. Electr. Power Syst. Res. 20(2), 157–165 (1991)Google Scholar
  40. 40.
    L.D. Douglas, T.A. Green, R.A. Kramer, New approaches to the AGC nonconforming load problem. IEEE Trans. Power Syst. 9(2), 619–628 (1994)Google Scholar
  41. 41.
    T. Pan, C.M. Liaw, An adaptive controller for power system and load frequency control. IEEE Trans. Power Syst. 4(1), 122–128 (1989)Google Scholar
  42. 42.
    R.R. Shoults, J.A.J. Ibarra, Multi-area adaptive LFC developed for a comprehensive AGC simulator. IEEE Trans. Power App. Syst. 8(2), 541–547 (1993)Google Scholar
  43. 43.
    M.A. Sheirah, O.P. Malik, G.S. Hope, Minimum variance strategy for load frequency control. Int. J. Electr. Power Energy Syst. 8(2), 120–126 (1986)Google Scholar
  44. 44.
    L.D. Douglas, T.A. Green, R.A. Kramer, New approach to the AGC non-conforming load program. IEEE Trans. Power Syst. 9(2), 619–628 (1994)Google Scholar
  45. 45.
    R.P. Schulte, An automatic generation control modification for present demands on interconnected power systems. IEEE Trans. Power Syst. 11(3), 1286–1294 (1996)Google Scholar
  46. 46.
    J.Z. Zhu, C.S. Chang, G.Y. Xu, A new model and algorithm of secure and economic automatic generation control. Elec. Power Syst. Res. 45, 119–127 (1998)Google Scholar
  47. 47.
    Y. Hain, R. Kulessky, G. Nudelman, Identification-based power unit model for load-frequency control purposes. IEEE Trans. Power Syst. 15(4), 1313–1321 (2000)Google Scholar
  48. 48.
    N. Maruejouls, T. Margotin, M. Trotignon, P.L. Dupuis, J.M. Tesseron, Measurement of the load frequency control system service: comparison between American and European indicators. IEEE Trans. Power Syst. 15(4), 1382–1387 (2000)Google Scholar
  49. 49.
    D.J. Trudnowski, W.L. McReynolds, J.M. Johnson, Real-time very short-term load prediction for power system automatic generation control. IEEE Trans. Control Syst. Technol. 9(2), 254–260 (2001)Google Scholar
  50. 50.
    G. Gross, J.W. Lee, Analysis of load frequency control performance assessment criteria. IEEE Trans. Power Syst. 16(3), 520–532 (2001)Google Scholar
  51. 51.
    N. Hoonchareon, C.M. Ong, R.A. Kramer, Implementation of an ACE1 decomposition method. IEEE Trans. Power Syst. 17(3), 757–761 (2002)Google Scholar
  52. 52.
    Y.H. Moon, H.S. Ryu, J.G. Lee, K.B. Song, M.C. Shin, Extended integral control for load frequency control with the consideration of generation-rate constraints. Electr. Power Energy Syst. 24, 263–269 (2002)Google Scholar
  53. 53.
    L.R.C. Chien, C.M. Ong, R.A. Kramer, Field tests and refinements of an ACE model. IEEE Trans. Power Syst. 18(2), 898–903 (2003)Google Scholar
  54. 54.
    L.R.C. Chien, N. Hoonchareon, C.M. Ong, R.A. Kramer, Estimation of β for adaptive frequency bias setting in load frequency control. IEEE Trans. Power Syst. 18(2), 904–911 (2003)Google Scholar
  55. 55.
    B. Stojkovic, An original approach for load-frequency control – the winning solution in the second UCTE synchronous zone. Electr. Power Syst. Res. 69, 59–68 (2004)Google Scholar
  56. 56.
    E.C. Tacker, C.C. Lee, T.W. Reddoch, T.O. Tan, P.M. Julich, Optimal control of interconnected electric energy systems: a new formulation. Proc. IEEE 60(10), 1239–1241 (1972)Google Scholar
  57. 57.
    E.V. Bohn, S.M. Miniesy, Optimum load frequency sample data control with randomly varying system disturbances. IEEE Trans. Power App. Syst. PAS-91(5), 1916–1923 (1972)Google Scholar
  58. 58.
    K. Yamashita, T. Taniguchi, Optimal observer design for load frequency control. Int. J. Electr. Power Energy Syst. 8(2), 93–100 (1986)Google Scholar
  59. 59.
    A. Feliachi, Load frequency control using reduced order models and local observers. Int. J. Energy Syst. 7(2), 72–75 (1987)Google Scholar
  60. 60.
    A. Rubaai, V. Udo, An adaptive control scheme for LFC of multiarea power systems. Part I: identification and functional design, Part-II: implementation and test results by simulation. Electr. Power Syst. Res. 24(3), 183–197 (1992)Google Scholar
  61. 61.
    S. Velusami, K. Ramar, Design of observer-based decentralized-frequency controllers for interconnected power systems. Int. J. Power Energy Syst 17(2), 152–160 (1997)Google Scholar
  62. 62.
    Y. Hain, R. Kulessky, G. Nudelman, Identification-based power unit model for load-frequency control purposes. IEEE Trans. Power Syst. 15(4), 1313–1321 (2000)Google Scholar
  63. 63.
    M.S. Calovic, Linear regulator design for a load and frequency control. IEEE Trans. Power App. Syst. 91, 2271–2285 (1972)Google Scholar
  64. 64.
    T. Hiyama, Design of decentralised load-frequency regulators for interconnected power systems. IEE Proc. Pt. C 129(1), 17–23 (1982)Google Scholar
  65. 65.
    H. Bevrani, T. Hiyama, Y. Mitani, K. Tsuji, Automatic generation control: a decentralized robust approach. Intell. Autom. Soft Comput. J. 13(3), 273–287 (2007)Google Scholar
  66. 66.
    J. Kanniah, S.C. Tripathy, O.P. Malik, G.S. Hope, Microprocessor-based adaptive load-frequency control. IEE Proc. Gener. Transm. Distrib. 131(4), 121–128 (1984)Google Scholar
  67. 67.
    A. Feliachi, Optimal decentralized load frequency control. IEEE Trans. Power Systems PWRS-2(2), 379–384 (1987)Google Scholar
  68. 68.
    Y.M. Park, K.L. Lee, Optimal decentralized load frequency control. Int. J. Electr. Power Energy Syst. 27, 279–288 (1987)Google Scholar
  69. 69.
    O.P. Malik, A. Kumar, G.S. Hope, A load frequency control algorithm based on a generalized approach. IEEE Trans. Power Syst. 3(2), 375–382 (1988)Google Scholar
  70. 70.
    M. Aldeen, J.F. Marsh, Decentralised proportional-plus-integral design method for interconnected power systems. IEE Proc. Pt. C 138(4), 285–289 (1991)Google Scholar
  71. 71.
    C.M. Liaw, K.H. Chao, On the design of an optimal automatic generation controller for interconnected power systems. Int. J. Control 58, 113–127 (1993)zbMATHMathSciNetGoogle Scholar
  72. 72.
    V.R. Moorthi, P.P. Aggarwal, Suboptimal and near optimal control of a load-frequency control system. IEE Proc. Pt. C 129(6), 1635–1660 (1982)Google Scholar
  73. 73.
    R. Moorthi, R.P. Aggarawal, Suboptimal and near optimal control of a load frequency control system. Proc. Inst. Electr. Eng. 119, 1653–1660 (1972)Google Scholar
  74. 74.
    S.S. Choi, H.K. Sim, K.S. Tan, Load frequency control via constant limited-state feedback. Electr. Power Syst. Res. 4(4), 265–269 (1981)Google Scholar
  75. 75.
    M. Aldeen, H. Trinh, Load frequency control of interconnected power systems via constrained feedback control schemes. Int. J. Comput. Electr. Eng. 20(1), 71–88 (1994)zbMATHGoogle Scholar
  76. 76.
    N.N. Bengiamin, W.C. Chan, Variable structure control of electric power generation. IEEE Trans. Power App. Syst. 101, 376–380 (1982)Google Scholar
  77. 77.
    A.Y. Sivaramakrishnan, M.V. Hartiharan, M.C. Srisailam, Design of variable structure load frequency controller using pole assignment technique. Int. J. Control 40, 487–498 (1984)zbMATHGoogle Scholar
  78. 78.
    Y. Y. Hsu, W.C. Chan, Optimal variable structure control of interconnected hydrothermal power systems. Int. J. Electr. Power Energy Syst. 6, 221–229 (1984)Google Scholar
  79. 79.
    A.Z. Al-Hamouz, Y.L. Al-Magid, Variable structure load frequency controllers for multiarea power systems. Electr. Power Energy Syst. 15, 293–300 (1993)Google Scholar
  80. 80.
    J. Erschler, F. Roubeliat, J.P. Vernhes, Automation of a hydroelectric power station using variable-structure control systems. Automatica 10, 31–36 (1974)Google Scholar
  81. 81.
    W.C. Chan, Y.Y. Hsu, Automatic generation control of interconnected power systems using variable-structure controller. Proc. Inst. Electr. Eng. C 128(5), 269–279 (1981)Google Scholar
  82. 82.
    A. Kumar, O.P. Malik, G.S. Hope, Variable-structure-system control applied to AGC of an interconnected power system. Proc. Inst. Electr. Eng. C 132(1), 23–29 (1985)Google Scholar
  83. 83.
    D. Das, M.L. Kothari, D.P. Kothari, J. Nanda, Variable structure control strategy to automatic generation control of interconnected reheat thermal systems. Proc. Inst. Electr. Eng. Control Theory Appl. 138(6), 579–585 (1991)Google Scholar
  84. 84.
    Y. Wang, R. Zhou, C. wen, Robust load-frequency controller design for power systems. IEE Proc. Pt. C 140(1), 11–16 (1993)Google Scholar
  85. 85.
    K.Y. Lim, Y. Wang, R. Zhou, Robust decentralized load-frequency control of multi-area power systems. IEE Proc. Gener. Transm. Distrib. 143(5), 377–386 (1996)Google Scholar
  86. 86.
    T.C. Yang, H. Cimen, Q.M. Zhu, Decentralised load frequency controller design based on structured singular values. IEE Proc. Gener. Transm. Distrib. 145(1), 7–14 (1998)Google Scholar
  87. 87.
    H. Bevrani, Application of Kharitonov’s theorem and its results in load-frequency control design. J. Electr. Sci. Technol.-BARGH. 82(24), 82–95 (1998) Google Scholar
  88. 88.
    K.Y. Lim, Y. Wang, G. Guo, R. Zhou, A new decentralized robust controller design for multiarea load-frequency control via complete state feedback. Optimal Control Appl. Methods 19, 345–361 (1998)MathSciNetGoogle Scholar
  89. 89.
    A.M. Stankovic, G. Tadmor, T.A. Sakharuk, On robust control analysis and design for load frequency regulation. IEEE Trans. Power Syst. 13(2), 449–455 (1998)Google Scholar
  90. 90.
    G. Ray, A.N. Prasad, T.K. Bhattacharyya, Design of decentralized robust load-frequency controller based on SVD method. Comput. Electr. Eng. 25, 477–492 (1999)zbMATHGoogle Scholar
  91. 91.
    G. Ray, A.N. Prasad, G.D. Prasad, A new approach to the design of robust load-frequency controller for large scale power systems. Electr. Power Syst. Res. 51, 13–22 (1999)Google Scholar
  92. 92.
    J. Liu, M.S. Fadali, R. Zhou, Performance constrained stabilization of uncertain systems: application to load-frequency control. Comput. Electr. Eng. 25, 135–152 (1999)Google Scholar
  93. 93.
    M. Azzam, Robust automatic generation control. Energy Convers. Manage. 40, 1413–1421 (1999)Google Scholar
  94. 94.
    T. Ishi, G. Shirai, G. Fujita, Decentralized load frequency based on H∞ control. Electr. Eng. Jpn 136(3), 28–38 (2001)Google Scholar
  95. 95.
    D. Rerkpreedapong, A. Hasanovic, A. Feliachi, Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Trans. Power Syst. 18(2), 855–861 (2003)Google Scholar
  96. 96.
    T.C. Yang, Z.T. Ding, H. Yu, Decentralised power system load frequency control beyond the limit of diagonal dominance. Electr. Power Energy Syst. 24, 173–184 (2002)Google Scholar
  97. 97.
    M. Azzam, Y.S. Mohamed, Robust controller design for automatic generation control based on Q-parameterization. Energy Convers. Manage. 43, 1663–1673 (2002)Google Scholar
  98. 98.
    Y. Wang, R. Zhou, C. Wen, New robust adaptive load frequency control with system parameter uncertainties. Proc. Inst. Electr. Eng. 141(3), 184–190 (1994)Google Scholar
  99. 99.
    H. Bevrani, Y. Mitani, K. Tsuji, Robust decentralized load-frequency control using an iterative linear matrix inequalities algorithm. IEE Proc. Gener. Transm. Distrib. 151(3), 347–354 (2004)Google Scholar
  100. 100.
    H. Bevrani, T. Hiyama, Robust load-frequency regulation: a real-time laboratory experiment. Optimal Control Appl. Methods 28(6), 419–433 (2007)MathSciNetGoogle Scholar
  101. 101.
    H. Bevrani, T. Hiyama, On load-frequency regulation with time delays: design and realtime implementation. IEEE Trans. Energy Convers. 24(1), 292–300 (2009) Google Scholar
  102. 102.
    M.A. Sheirah, M.M. A-el-Fattah, Improved load-frequency self-tuning regulator. Int. J. Control 39, 143–158 (1984)zbMATHGoogle Scholar
  103. 103.
    I. Vajk, M. Vajta, L. Keviczky, R. Haber, J. Hetthessy, K. Kovacs, Adaptive load frequency control of the Hungarian power system. Automatica 21, 129–137 (1985)zbMATHGoogle Scholar
  104. 104.
    C.T. Pan, C.M. Liaw, An adaptive controller for power system load frequency control. IEEE Trans. Power Syst. PWRS-4, 122–128 (1989)Google Scholar
  105. 105.
    A. Rubaai, V. Udo, Self-tuning load frequency control: multilevel adaptive approach. IEE Proc. Gener. Transm. Distrib. 141(4), 285–290 (1994)Google Scholar
  106. 106.
    C.W. Ross, T.A. Green, Dynamic performance evaluation of a computer controlled electric power system. IEEE Trans. Power App. Syst. PAS-91, 1156–1165 (1972)Google Scholar
  107. 107.
    F.P. Demello, R.J. Mills, W.F. B’Rells, Automatic generation control, part I – Process modeling. IEEE Trans. Power App. Syst. PAS-92, 710–715 (1973)Google Scholar
  108. 108.
    L. M. Smith, L. H. Fink, R. P. Schulz, Use of computer model of interconnected power system to assess generation control strategies, IEEE Trans. Power App. Syst., vol. 94, no. 5, 1975Google Scholar
  109. 109.
    L. Hari, M.L. Kothari, J. Nanda, Optimum selection of speed regulation parameters for automatic generation control in discrete mode considering generation rate constraints. Proc. Inst. Electr. Eng. C 138(5), 401–406 (1991)Google Scholar
  110. 110.
    C.W. Taylor, R.L. Cresap, Real-time power system simulations for automatic generation control. IEEE Trans. Power App. Syst. PAS-95, 375–384 (1976)Google Scholar
  111. 111.
    A. Kumar, Discrete load frequency control of interconnected power system. Int. J. Energy Syst. 9(2), 73–77 (1989)Google Scholar
  112. 112.
    M.L. Kothari, J. Nanda, D.P. Kothari, D. Das, Discrete mode automatic generation control of a two area reheat thermal system with new area control error. IEEE Trans. Power App. Syst. 4(2), 730–738 (1989)Google Scholar
  113. 113.
    D.C.H. Prowse, Improvements to a standard automatic generation control filter algorithm. IEEE Trans. Power Syst. 8(3), 1204–1210 (1993)Google Scholar
  114. 114.
    F. Beaufays, Y. Abdel-Magid, B. Widrow, Application of neural networks to load-frequency control in power systems. Neural Networks 7(1), 183–194 (1994)Google Scholar
  115. 115.
    D.K. Chaturvedi, P.S. Satsangi, P.K. Kalra, Load frequency control: a generalised neural network approach. Electr. Power Energy Syst. 21, 405–415 (1999)Google Scholar
  116. 116.
    H.L. Zeynelgil, A. Demirorem, N.S. Sengor, Load frequency control for power system with reheat steam turbine and governor deadband non-linearity by using neural network controller. Eur. Trans. Electr. Power 12(3), 179–184 (2002)Google Scholar
  117. 117.
    H. Bevrani, T. Hiyama, Y. Mitani, K. Tsuji, M. Teshnehlab, Load-frequency regulation under a bilateral LFC scheme using flexible neural networks. Eng. Intell. Syst. J. 14(2), 109–117 (2006)Google Scholar
  118. 118.
    H. Bevrani, in Proceedings of IEEE/PES T&D 2002. A novel approach for power system load frequency controller design, vol. 1 (Asia Pacific, Yokohama, 2002), pp. 184–189Google Scholar
  119. 119.
    C.F. Juang, C.F. Lu, Load-frequency control by hybrid evolutionary fuzzy PI controller. IEE Proc. Gener. Transm. Distrib. 153(2), 196–204 (2006)Google Scholar
  120. 120.
    C.S. Chang, W. Fu, Area load frequency control using fuzzy gain scheduling of PI controllers. Electr. Power Syst. Res. 42, 145–152 (1997)Google Scholar
  121. 121.
    G.A. Chown, R.C. Hartman, Design and experience with a fuzzy logic controller for automatic generation control (AGC). IEEE Trans. Power Syst. 13(3), 965–970 (1998)Google Scholar
  122. 122.
    J. Talaq, F. Al-Basri, Adaptive fuzzy gain scheduling for load frequency control. IEEE Trans. Power Syst. 14(1), 145–150 (1999)Google Scholar
  123. 123.
    Z.M. Al-Hamouz, H.N. Al-Duwaish, A new load frequency variable structure controller using genetic algorithm. Electr. Power Syst. Res. 55, 1–6 (2000)Google Scholar
  124. 124.
    A. Demirorem, S. Kent, T. Gunel, A genetic approach to the optimization of automatic generation control parameters for power systems. Eur. Trans. Electr. Power 12(4), 275–281 (2002)Google Scholar
  125. 125.
    M.K. El-Sherbiny, G. El-Saady, A.M. Yousef, Efficient fuzzy logic load-frequency controller. Energy Convers. Manage. 43, 1853–1863 (2002)Google Scholar
  126. 126.
    E. Yesil, M. Guzelkaya, I. Eksin, Self tuning fuzzy PID type load frequency controller. Energy Convers. Manage. 45, 377–390 (2004)Google Scholar
  127. 127.
    C.S. Indulkar, B. Raj, Application of fuzzy controller to automatic generation control. Electr. Mach. Power Syst. 23(2), 209–220 (1995)Google Scholar
  128. 128.
    A.E. Gegov, P.M. Frank, Decomposition of multivariable systems for distributed fuzzy control [power system load frequency control]. Fuzzy Sets Syst. 73(3), 329–340 (1995)zbMATHMathSciNetGoogle Scholar
  129. 129.
    Y.L. Abdel-Magid, M.M. Dawoud, Optimal AGC tuning with genetic algorithms. Electr. Power Syst. Res. 38(3), 231–238 (1996)Google Scholar
  130. 130.
    A. Abdennour, Adaptive optimal gain scheduling for the load frequency control problem. Electr. Power Compon. Syst. 30(1), 45–56 (2002)Google Scholar
  131. 131.
    S.K. Aditya, D. Das, Design of load frequency controllers using genetic algorithm for two area interconnected hydro power system. Electr. Power Compon. Syst. 31(1), 81–94 (2003)Google Scholar
  132. 132.
    M. Djukanovic, M. Novicevic, D.J. Sobajic, Y.P. Pao, Conceptual development of optimal load frequency control using artificial neural networks and fuzzy set theory. Int. J. Eng. Intell. Syst. Electr. Eng. Commun. 3(2), 95–108 (1995)Google Scholar
  133. 133.
    C.S. Chang, W. Fu, F. Wen, Load frequency controller using genetic algorithm based fuzzy gain scheduling of PI controller. Electr. Mach. Power Syst. 26, 39–52 (1998)Google Scholar
  134. 134.
    Y.L. Karnavas, D.P. Papadopoulos, AGC for autonomous power system using combined intelligent techniques. Electr. Power Syst. Res. 62, 225–239 (2002)Google Scholar
  135. 135.
    H. Bevrani, T. Hiyama, Intelligent Automatic Generation Control. (CRC Press, New York, 2011)Google Scholar
  136. 136.
    I. Ngamroo, Y. Mitani, K. Tsuji, Application of SMES coordinated with solid-state phase shifter to load frequency control. IEEE Trans. Appl. Superconduct. 9(2), 322–325 (1999)Google Scholar
  137. 137.
    A. Demiroren, Application of a self-tuning to automatic generation control in power system including SMES units. ETEP 12(2), 101–109 (2002)Google Scholar
  138. 138.
    A. Demiroren, E. Yesil, Automatic generation control with fuzzy logic controllers in the power system including SMES units. Electr. Power Energy Syst. 26, 291–305 (2004)Google Scholar
  139. 139.
    S.C. Tripathy, Improved load-frequency control with capacitive energy storage. Energy Convers. Manage. 38(6), 551–562 (1997)Google Scholar
  140. 140.
    H. Asano, K. Yajima, Y. Kaya, Influence of photovoltaic power generation on required capacity for load frequency control. IEEE Trans. Energy Convers. 11(1), 188–193 (1996)Google Scholar
  141. 141.
    S.K. Aditya, D. Das, Battery energy storage for load frequency control of an interconnected power system. Electr. Power Syst. Res. 58, 179–185 (2001)Google Scholar
  142. 142.
    T. Sasaki, T. Kadoya, K. Enomoto, Study on load frequency control using redox flow batteries. IEEE Trans. Power Syst. 19(1), 660–667 (2004)Google Scholar
  143. 143.
    H.J. Kunish, K.G. Kramer, H. Dominik, Battery energy storage – Another option for load-frequency control and instantaneous reserve. IEEE Trans. Energy Convers. EC-1(3), 46–51 (1986)Google Scholar
  144. 144.
    A. Paradkar, A. Davari, A. Feliachi, T. Biswas, Integration of a fuel cell into the power system using an optimal controller based on disturbance accommodation control theory. J. Power Sources 128(2), 218–230 (2004)Google Scholar
  145. 145.
    H. Banakar, C. Luo, B.T. Ooi, Impacts of wind power minute to minute variation on power system operation. IEEE Trans. Power Syst. 23(1), 150–160 (2008)Google Scholar
  146. 146.
    G. Lalor, A. Mullane, M. O’Malley, Frequency control and wind turbine technology. IEEE Trans. Power Syst. 20(4), 1905–1913 (2005)Google Scholar
  147. 147.
    N.R. Ullah, T. Thiringer, D. Karlsson, Temporary primary frequency control support by variable speed wind turbines: potential and applications. IEEE Trans. Power Syst. 23(2), 601–612 (2008)Google Scholar
  148. 148.
    J. Morren, S.W.H. de Haan, W.L. Kling et al., Wind turbine emulating inertia and supporting primary frequency control. IEEE Trans. Power Syst. 21(1), 433–434 (2006)Google Scholar
  149. 149.
    Y. Yoshida, T. Machida, H. Nakamura, A method of automatic frequency ratio control by DC system. IEEE Trans. Power App. Syst. PAS-86(7), 263–267 (1967)Google Scholar
  150. 150.
    Y. Yoshida, T. Machida, Study of the effect of the DC link on frequency control in interconnected AC systems. IEEE Trans. Power App. Syst. PAS-88(7), 1036–1042 (1969)Google Scholar
  151. 151.
    M. Sanpei, A. Kakehi, H. Takeda, Application of multi-variable control for automatic frequency controller of HVDC transmission system. IEEE Trans. Power Deliv. 9(2), 1063–1068 (1994)Google Scholar
  152. 152.
    N. Rostamkolai, C.A. Wengner, R.J. Piwko, H. Elahi, M.A. Eitzmann, G. Garzi, P. Taetz, Control design of Santo Tome back-to back HVDC link. IEEE Trans. Power Syst. 8(3), 1250–1256 (1993)Google Scholar
  153. 153.
    K.Y. Lim, Y. Wang, R. Zhou, Decentralised robust load-frequency control in coordination with frequency-controllable HVDC links. Int. J. Electr. Power Energy Syst. 19(7), 423–431 (1997)Google Scholar
  154. 154.
    R.D. Chritie, A. Bose, Load frequency control issues in power system operation after deregulation. IEEE Trans. Power Syst. 11(3), 1191–1200 (1996)Google Scholar
  155. 155.
    J. Kumar, N.G.K. Hoe, G.B. Sheble, AGC simulator for price-based operation. Part I: a model. IEEE Trans. Power Syst. 2(12), 527–532 (1997)Google Scholar
  156. 156.
    J. Kumar, N.G.K. Hoe, G.B. Sheble, AGC simulator for price-based operation. Part II: case study results. IEEE Trans. Power Syst. 2(12), 533–538 (1997)Google Scholar
  157. 157.
    B.H. Bakken, O.S. Grande, Automatic generation control in a deregulated power system. IEEE Trans. Power Syst. 13(4), 1401–1406 (1998)Google Scholar
  158. 158.
    A.P.S. Meliopoulos, G.J. Cokkinides, A.G. Bakirtzis, Load-frequency control service in a deregulated environment. Decis. Support Syst. 24, 243–250 (1999)Google Scholar
  159. 159.
    V. Donde, M.A. Pai, I.A. Hiskens, Simulation and optimization in a AGC system after deregulation. IEEE Trans. Power Syst. 16(3), 481–489 (2001)Google Scholar
  160. 160.
    J.M. Arroyo, A.J. Conejo, Optimal response of a power generator to energy, AGC, and reserve pool-based markets. IEEE Trans. Power Syst. 17(2), 404–410 (2002)Google Scholar
  161. 161.
    B. Delfino, F. Fornari, S. Massucco, Load-frequency control and inadvertent interchange evaluation in restructured power systems. IEE Proc. Gener. Transm. Distrib. 149(5), 607–614 (2002)Google Scholar
  162. 162.
    H. Bevrani, Y. Mitani, K. Tsuji, Robust AGC: traditional structure versus restructured scheme. IEE J. Trans. Power Energy 124-B(5), 751–761 (2004)Google Scholar
  163. 163.
    H. Bevrani, Y. Mitani, K. Tsuji, H. Bevrani, Bilateral-based robust load-frequency control. Energy Convers. Manage. 46, 1129–1146 (2005)Google Scholar
  164. 164.
    F. Liu, Y.H. Song, J. Ma, S. Mei, Q. Lu, Optimal load-frequency control in restructured power systems. IEE Proc. Gener. Transm. Distrib. 150(1), 377–386 (2003)Google Scholar
  165. 165.
    S. Bhowmik, K. Tomsovic, A. Bose, Communication models for third party load frequency control. IEEE Trans. Power Syst. 19(1), 543–548 (2004)Google Scholar
  166. 166.
    H. Bevrani, Decentralized Robust Load-Frequency Control Synthesis in Restructured Power Systems. PhD Dissertation, Osaka University, 2004Google Scholar
  167. 167.
    L. Vanslyck, N. Jaleeli, W.R. Kelley, Implications of frequency bias settings on interconnected system operation and inadvertent energy accounting. IEEE Trans. Power Syst. 4(2), 712–723 (1989)Google Scholar
  168. 168.
    H. Singh, A. Papalexopoulos, Competitive procurement of ancillary services by an independent system operator. IEEE Trans. Power Syst. 14(2), 498–504 (1999)Google Scholar
  169. 169.
    K.W. Cheung, P. Shamsollahi, D. Sun, J. Milligan, M. Potishanak, Energy and ancillary service dispatch for the interim ISO New England electricity market. IEEE Trans. Power Syst. 15(3), 968–974 (2000)Google Scholar
  170. 170.
    X.S. Zhao, F.S. Wen, D.Q. Gan, M.X. Huang, C.W. Yu, C.Y. Chung, Determination of AGC capacity requirement and dispatch considering performance penalties. Electr. Power Syst. Res. 70(2), 93–98 (2004)Google Scholar
  171. 171.
    H. Bevrani, T. Hiyama, Robust decentralized PI based LFC design for time-delay power systems. Energy Convers. Manage. 49, 193–204 (2007)Google Scholar
  172. 172.
    H. Bevrani, T. Hiyama, Robust load-frequency regulation: a real-time laboratory experiment. Optimal Control Appl. Methods 28(6), 419–433 (2007)MathSciNetGoogle Scholar
  173. 173.
    G. Dellolio, M. Sforna, C. Bruno, M. Pozzi, A pluralistic LFC scheme for online resolution of power congestions between market zones. IEEE Trans. Power Syst. 20(4), 2070–2077 (2005)Google Scholar
  174. 174.
    B. Tyagi, S.C. Srivastava, A decentralized automatic generation control scheme for competitive electricity market. IEEE Trans. Power Syst. 21(1), 312–320 (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of KurdistanSanandajIran

Personalised recommendations