Advertisement

Virtual Inertia-Based Frequency Control

  • Hassan BevraniEmail author
Chapter
  • 3k Downloads
Part of the Power Electronics and Power Systems book series (PEPS)

Abstract

This chapter addresses the most important issues on the virtual synchronous generator (VSG) concept with the relevant past achievements. The most important VSG design frameworks and topologies are described. An overview of the key issues in the integration of VSGs in the MGs and power grids, and their application areas that are of most interest today is presented. Then the chapter focuses on the potential role of VSGs in the grid frequency control task. Finally, the need for further research on the more flexible and effective VSGs, and some other related areas, is emphasized.

Keywords

Virtual inertia Frequency control Virtual synchronous generator (VSG) Microgrid Damping Stability improvement Synchronous generator VSG topology Power inverter State of charge (SOC) PWM Battery Active power Control mechanism Reference current Power reserve 

References

  1. 1.
    K. Koyanagi, et al., A smart photovoltaic generation system integrated with lithium-ion capacitor storage, in 46th International Universities’ Power Engineering Conference, Soest, Germany (2011)Google Scholar
  2. 2.
    H. Bevrani, T. Hiyama, Intelligent automatic generation control (CRC Press, NY, 2011)Google Scholar
  3. 3.
    M.P.N. van Wesenbeeck, S.W.H. de Haan, P. Varela, K. Visscher, Grid tied converter with virtual kinetic storage, in PowerTech, 2009 IEEE Bucharest (2009), pp. 1–7Google Scholar
  4. 4.
    G. Pepermans, J. Driesen, D. Haeseldonckx, R. Belmans, W. D’Haeseleer, Distributed generation: definition, benefits and issues. Energy Policy, 33(6), 787–798 (2005)Google Scholar
  5. 5.
    Q.-C. Zhong, G. Weiss, Synchronverters: inverters that mimic synchronous generators. IEEE Trans. Ind. Electron. 58(4), 1259–1267 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Bevrani, T. Ise, Y. Miura, Virtual synchronous generators: a survey and new perspectives. Int. J. Electr. Power Energy Syst. 54, 244–254 (2014)CrossRefGoogle Scholar
  7. 7.
    K. Visscher, S.W.H. De Haan, Virtual synchronous machines (VSG’s) for frequency stabilisation in future grids with a significant share of decentralized generation, in SmartGrids for Distribution, 2008. IET-CIRED. CIRED Seminar (2008), pp. 1–4Google Scholar
  8. 8.
    Y. Chen, et al., Comparison of methods for implementing virtual synchronous machine on inverters, in International Conference on Renewable Energies and Power Quality-ICREPQ’12, Spain, March 2012Google Scholar
  9. 9.
    C. Yong, R. Hesse, D. Turschner, H. P. Beck, Improving the grid power quality using virtual synchronous machines, in 2011 International Conference on Power Engineering, Energy and Electrical Drives (POWERENG) (2011), pp. 1–6Google Scholar
  10. 10.
    M. Albu, J. Diaz, V. Thong, R. Neurohr, D. Federenciuc, M. Popa, M. Calin, Measurement and remote monitoring for virtual synchronous generator design, in 2010 IEEE International Workshop on Applied Measurements For Power Systems (AMPS) (2010), pp. 7–11Google Scholar
  11. 11.
    V. Karapanos, et al., Testing a virtual synchronous generator in a real time simulated power system, in International Conference on Power Systems Transients (IPST2011), Delft, Netherland, June 2011Google Scholar
  12. 12.
    M. Torres, L.A.C. Lopes, Virtual synchronous generator control in autonomous wind-diesel power systems, in IEEE Electrical Power and Energy Conference (2009), pp. 1–6Google Scholar
  13. 13.
    M. Albu, A. Nechifor, D. Creanga, Smart storage for active distribution networks estimation and measurement solutions, in Instrumentation and Measurement Technology Conference (I2MTC), 2010 IEEE (2010), pp. 1486–1491Google Scholar
  14. 14.
    H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, Y. Mitani, Intelligent frequency control in an AC microgrid: on-line PSO-based fuzzy tuning approach. IEEE Trans. Smart Grid 3(4), 1935–1944 (2012) Google Scholar
  15. 15.
    H. Bevrani, M. Watanabe, Y. Mitani, Microgrid controls, in Standard handbook for electrical engineers, Section 16, 16th edn., ed. by H.W. Beaty, D.G. Fink (McGraw-Hill, New York, 2012)Google Scholar
  16. 16.
    B. Kroposki, R. Lasseter,T. Ise, S. Morozumi, S. Papathanassiou, N. Hatziargyriou, Making microgrids work. IEEE Power Energ. Mag. 6, 40–53 (2008)Google Scholar
  17. 17.
    I. Serban, C. Marinescu, Frequency control issues in microgrids with renewable energy sources, in 2011 7th International Symposium on Advanced Topics in Electrical Engineering (ATEE) (2011), pp. 1–6Google Scholar
  18. 18.
    H. Bevrani, S. Shokoohi, An intelligent droop control for simultaneous voltage and frequency regulation in islanded microgrids. IEEE Trans. Smart Grid 4(3), 1505–1513 (2013)CrossRefGoogle Scholar
  19. 19.
    K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, R. Belmans, A voltage and frequency droop control method for parallel inverters. IEEE Trans. Power Electron. 22, 1107–1115 (2007)CrossRefGoogle Scholar
  20. 20.
    H. Bevrani, Automatic generation control, in Standard handbook for electrical engineers, Section 16, 16th edn., ed. by H.W. Beaty, D.G. Fink (McGraw-Hill, New York, 2012)Google Scholar
  21. 21.
    T. V. Van, K. Visscher, J. Diaz, V. Karapanos, A. Woyte, M. Albu, J. Bozelie, T. Loix, D. Federenciuc, Virtual synchronous generator: an element of future grids, in Innovative Smart Grid Technologies Conference Europe (ISGT Europe), IEEE PES (2010) pp. 1–7Google Scholar
  22. 22.
    V. Karapanos, Z. Yuan, S. de Haan, SOC maintenance and coordination of multiple VSG units for grid support and transient stability, in 3rd VSYNC Workshop, Cheia, Romania, June 2010Google Scholar
  23. 23.
    M. Albu, M. Calin, D. Federenciuc, J. Diaz, The measurement layer of the virtual synchronous generator operation in the field test, in 2011 IEEE International Workshop on Applied Measurements for Power Systems (AMPS) (2011), pp. 85–89Google Scholar
  24. 24.
    J. Driesen and K. Visscher, Virtual synchronous generators, in Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE (2008), pp. 1–3Google Scholar
  25. 25.
    V. Karapanos, S. de Haan, K. Zwetsloot, Real time simulation of a power system with VSG hardware in the loop, in IECON 2011—37th Annual Conference on IEEE Industrial Electronics Society (2011), pp. 3748–3754Google Scholar
  26. 26.
    Y. Chen, et al., Dynamic properties of the virtual synchronous machine (VISMA), in International Conference on Renewable Energies and Power Quality (ICREPQ’11), Las Palmas de Gran Canaria, Spanien, April 2011Google Scholar
  27. 27.
    R. Hesse, et al., Micro grid stabilization using the virtual synchronous machine (VISMA), in International Conference on Renewable Energies and Power Quality-ICREPQ’09, Valencia, Spain, April 2009Google Scholar
  28. 28.
    Y. Hirase et al., A grid connected inverter with virtual synchronous generator model of algebraic type. IEEJ Trans. Power Energy 132(4), 371–380 (2012)CrossRefGoogle Scholar
  29. 29.
    K. Sakimoto, K. Sugimoto, and Y. Shindo, Low voltage ride through capability of a grid connected inverter based on the virtual synchronous generator, in 10th IEEE International Conference on Power Electronics and Drive Systems (PEDS), Kitakyushu, April 2013, pp. 1066–1071Google Scholar
  30. 30.
    K. Sakimoto, Y. Miura, T. Ise, Stabilization of a power system with a distributed generator by a Virtual Synchronous Generator function, in IEEE 8th International Conference on Power Electronics and ECCE Asia (ICPE and ECCE) (2011) pp. 1498–1505Google Scholar
  31. 31.
    K. Sakimoto, Y. Miura, T. Ise, Stabilization of a power system including inverter type distributed generators by the virtual synchronous generator. IEEJ Trans. Power Energy 132(4), 341–349 (2012)CrossRefGoogle Scholar
  32. 32.
    T. Shintai, Y. Miura, T. Ise, Reactive power control for load sharing with virtual synchronous generator control, in 7th IEEE International Power Electronics and Motion Control Conference on ECCE Asia, pp. 846–853, Harbin, China, June 2012Google Scholar
  33. 33.
    T. Shintai, Y. Miura, T. Ise, Oscillation damping of a distributed generator using a virtual synchronous generator. IEEE Trans. Power Delivery 29(2), 668–676 (2014)Google Scholar
  34. 34.
    V.V. Thong, et al., Virtual synchronous generator: laboratory scale results and field demonstration, in IEEE PowerTech Conference, Bucharest, Romania (2009)Google Scholar
  35. 35.
    G. Delille, B. Francois, G. Malarange, Dynamic frequency control support: a virtual inertia provided by distributed energy storage to isolated power systems, in Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010 IEEE PES (2010), pp. 1–8Google Scholar
  36. 36.
    N. Soni, S. Doolla, M.C. Chandorkar, Improvement of transient response in microgrids using virtual inertia. IEEE Trans. Power Delivery 28(3), 1830–1838 (2013)CrossRefGoogle Scholar
  37. 37.
    T. Loix, S. De Breucker, P. Vanassche, J. Van den Keybus, J. Driesen, K. Visscher, Layout and performance of the power electronic converter platform for the VSYNC project, in PowerTech, 2009 IEEE Bucharest (2009), pp. 1–8Google Scholar
  38. 38.
    M. Albu, K. Visscher, D. Creanga, A. Nechifor, N. Golovanov, Storage selection for DG applications containing virtual synchronous generators, in PowerTech, 2009 IEEE Bucharest (2009), pp. 1–6Google Scholar
  39. 39.
    K. Visscher, S.W.H. de Haan, Virtual synchronous machines for frequency stabilisation in future grids with a significant share of decentralised generation, in Proceedings of the CIRED SmartGrids Conference, Frankfurt, Germany, June 2008Google Scholar
  40. 40.
    M. Torres, L.A.C. Lopes, An optimal virtual inertia controller to support frequency regulation in autonomous diesel power systems with high penetration of renewables, in International Conference on Renewable Energies and Power Quality-ICREPQ’11, Spain (2011)Google Scholar
  41. 41.
    UCTE, Operation handbook 2004–2010. Available http://www.entsoe.eu
  42. 42.
    H. Bevran, T. Ise, Virtual Synchronous Generators: A Survey and New Perspectives. Technical report, Osaka University, Osaka, Japan (2012)Google Scholar
  43. 43.
    J.M. Guerrero, J.C. Vasquez, J. Matas, L.G. de Vicuna, M. Castilla, Hierarchical control of droop-controlled ac and dc microgrids: a general approach towards standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)CrossRefGoogle Scholar
  44. 44.
    A. Engler, O. Osika, M. Brnes, N. Jenkins, A. Arulampalam, Large scale integration of micro-generation to low voltage grids—local micro sources controller strategies and algorithms. Technical report (2004). http://www.microgrids.eu. Accessed Feb 2004
  45. 45.
    P. Kundur, Power system stability and control. (McGraw-Hill Professional, New York, 1994)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of KurdistanSanandajIran

Personalised recommendations