Frequency Control in Microgrids

  • Hassan BevraniEmail author
Part of the Power Electronics and Power Systems book series (PEPS)


This chapter reviews main control concepts in a Microgrid (MG) as basic elements of future smart grids, which have an important role to increase the grid efficiency, reliability, and to satisfy the environmental issues. The MG control loops are classified into local, secondary, global, and central/emergency controls. Then, the MG frequency response model is analyzed using the root locus method and the impact on each distributed generator on the frequency regulation is discussed. A generalized droop control for control of frequency (and voltage) in an MG is introduced and, finally, several intelligent/robust control methodologies are explained.


Microgrid (MG) MG structure MG control DG Microsource MG central controller (MGCC) Point of common coupling (PCC) Load controller (LC) PV Wind turbine Distribution network Distribution network operator (DNO) Local control Global control Secondary control Frequency response model Stability Diesel generator Energy storage system (ESS) Fuel cell (FC) Flywheel energy storage system (FESS) Root locus Droop control Generalized droop control ANFIS Intelligent control 


  1. 1.
    H. Bevrani, Y. Mitani, M. Watanabe, in Microgrids Controls. Standard Handbook for Electrical Engineers, 16th edn., Sect. 16.9, (McGraw-Hill Co., USA, 2013), pp. 159–176Google Scholar
  2. 2.
    H. Bevrani, M. Watanabe, Y. Mitani, Power system monitoring and control (Wiley-IEEE Press, USA, 2014)CrossRefGoogle Scholar
  3. 3.
    F. Habibi, On robust and intelligent frequency control synthesis in the Microgrids, M.Sc. Thesis, University of Kurdistan (2012)Google Scholar
  4. 4.
    S. Shokoohi, Analysis and control of microgrids under dynamic load variations, M.Sc. Thesis, University of Kurdistan, 2012Google Scholar
  5. 5.
    H. Bevrani, S. Shokoohi, An intelligent droop control for simultaneous voltage and frequency regulation in islanded Microgrids. IEEE Trans. Smart Grid 4(3), 1505–1513 (2013)CrossRefGoogle Scholar
  6. 6.
    H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, Y. Mitani, Intelligent frequency control in an AC microgrid: on-line PSO-based fuzzy tuning approach. IEEE Trans. Smart Grids 3(4), 1935–1944 (2012)CrossRefGoogle Scholar
  7. 7.
    H. Bevrani, T. Hiyama, in Neural network based AGC design, Chapter 5 in Intelligent automatic generation control (CRC Press, New York 2011), pp. 95–122Google Scholar
  8. 8.
    S.A. Papathanassiou, M.P. Papadopoulos, Dynamic characteristics of autonomous wind– diesel systems. Renew. Energy 23, 293–311 (2001)CrossRefGoogle Scholar
  9. 9.
    S. Obara, Analysis of a fuel cell micro-grid with a small-scale wind turbine generator. Int. J. Hydrogen Energy 32, 323–336 (2007)CrossRefGoogle Scholar
  10. 10.
    D.J. Lee, L. Wang, Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system part I: time-domain simulations. IEEE Trans. Energy Convers. 23(1), 311–320 (2008)CrossRefGoogle Scholar
  11. 11.
    K. De Brabandere, B. Bolsens, J. Van den Keybus, A. Woyte, J. Driesen, R. Belmans, A voltage and frequency droop control method for parallel inverters. IEEE Trans. Power Electron. 22, 1107–1115 (2007)CrossRefGoogle Scholar
  12. 12.
    H. Bevrani, T. Hiyama, Intelligent Automatic Generation Control (CRC PressI Llc, New York, 2011)Google Scholar
  13. 13.
    H. Bevrani, Robust power system frequency control, 1st edn. (Springer, USA, 2009)CrossRefzbMATHGoogle Scholar
  14. 14.
    M. Liserre, R. Teodorescu, F. Blaabjerg, Stability of photovoltaic and wind turbine grid-connected inverters for a large set of grid impedance values. IEEE Trans. Power Electron. 21, 263–272 (2006)CrossRefGoogle Scholar
  15. 15.
    N. Pogaku, M. Prodanovic, T.C. Green, Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans. Power Electron. 22, 613–625 (2007)CrossRefGoogle Scholar
  16. 16.
    S. Shokoohi, H. Bevrani, A.H. Naghshbandi, PSO based droop control of inverter interfaced distributed generations, in 2012 Conference on Smart Electric Grids Technology (SEGT2012), 18–19 Dec, Tehran, (2012)Google Scholar
  17. 17.
    J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948, Nov/Dec 1995Google Scholar
  18. 18.
    S. Papathanassiou, Study-Case LV Network. Available at
  19. 19.
    S. Papathanassiou, N. Hatziargyriou, K. Strunz, A benchmark low voltage microgrid network, in Proceedings of CIGRE Symposium on Power Systems with Dispersed Generation, Athens (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of KurdistanSanandajIran

Personalised recommendations