Wind Power and Frequency Control

  • Hassan BevraniEmail author
Part of the Power Electronics and Power Systems book series (PEPS)


This chapter presents some important issues regarding the wind power and frequency regulation issue. The most recent achievements in the relevant area are reviewed. The impact of power fluctuation due to high penetration of wind power on the system frequency response is emphasized, and to address this issue, advanced control synthesis methodologies are presented. The capability of wind turbines to support power system frequency control is discussed, and for this purpose some frequency response models are explained. The potential of robust control techniques such as H∞ control and model predictive control for effective contribution of wind turbines in the frequency regulation through the inertial, primary, and secondary control loops are highlighted.


Wind turbine Wind power Inertia response Primary control Secondary control Control performance standard LFC Fuzzy logic PSO Real-time simulation DFIG Variable speed wind turbine Rotor-side converter Stator-side converter PI control Proportional control H∞ control MPC 


  1. 1.
    N. Jaleeli, L.S. VanSlyck, NERC’s new control performance standards. IEEE Trans. Power Syst. 14(3), 1092–1099 (1999)CrossRefGoogle Scholar
  2. 2.
    T. Sasaki, K. Enomoto, Dynamic analysis of generation control performance standards. IEEE Trans. Power Syst. 17(3), 806–811 (2002)CrossRefGoogle Scholar
  3. 3.
    H. Bevrani, F. Daneshfar, P.R. Daneshmand, Intelligent power system frequency regulation concerning the integration of wind power units, in Book Chapter of Wind Power Systems: Applications of Computational Intelligence, ed. by L.F. Wang, C. Singh, A. Kusiak (Springer, Heidelberg, 2010), pp. 407–437CrossRefGoogle Scholar
  4. 4.
    H. Bevrani, A. Ghosh, G. Ledwich, Renewable energy sources and frequency regulation: survey and new perspectives. IET Renew. Power Gener. 4(5), 438–457 (2010)CrossRefGoogle Scholar
  5. 5.
    H. Bevrani, A fuzzy-based tuning approach for power system frequency regulation enhancement. Submitted to Optim. Control Appl. MethodsGoogle Scholar
  6. 6.
    H. Bevrani, Automatic generation control, in Standard handbook for Electrical Engineers, Section 16, 16th edn, ed. by H.W. Beaty, D.G. Fink (McGraw-Hill, New York, 2012)Google Scholar
  7. 7.
    H. Bevrani, P.R. Daneshmand, Fuzzy Logic Based Load-Frequency Control Concerning High Penetration of Wind Turbines. IEEE Syst. J. 6(1), 173–180 (2012)CrossRefGoogle Scholar
  8. 8.
    T.H. Mohamed, J. Morel, H. Bevrani, A.A. Hassan, Y.S. Mohamed, T. Hiyama, Decentralized model predictive-based load-frequency control in an interconnected power system concerning wind turbines. IEEJ Trans. Electr. Electron. Eng. 7, 487–494 (2012)CrossRefGoogle Scholar
  9. 9.
    G. Lalor, A. Mullane, M. O’Malley, Frequency control and wind turbine technologies. IEEE Trans. Power Syst. 20, 1905–1913 (2005)CrossRefGoogle Scholar
  10. 10.
    J. Morren, S.W.H. deHaan, W.L. et Kling, J.A. Ferreira, Wind turbines emulating inertia and supporting primary frequency control. IEEE Trans. Power Syst. 21(1), 433–434 (2006)CrossRefGoogle Scholar
  11. 11.
    T. Hiyama et al., Experimental studies on multi-agent based AGC for isolated power system with dispersed power sources. Eng. Intell. Syst. 13(2), 135–140 (2005)Google Scholar
  12. 12.
    G. Delille, B. Francois, G. Malarange, Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia. IEEE Trans. Sustain. Energy 3(4), 931–939 (2012)CrossRefGoogle Scholar
  13. 13.
    H. Bevrani, A.G. Tikdari, An ANN-based power system emergency control scheme in the presence of high wind power penetration, in Wind Power Systems: Applications of Computational Intelligence, ed. by L.F. Wang, C. Singh, A. Kusiak. Springer Book Series on Green Energy and Technology (Springer, Heidelberg, 2010), pp. 215–254Google Scholar
  14. 14.
    M. Saleh, H. Bevrani, Dynamic analysis and stability improvement concerning the integration of wind farms: kurdistan electric network case study, in Innovation in Power, Control and Optimization: Emerging Energy Technologies, Chapter 6, ed. by P. Vasant, N. Barsoum, J. Webb (IGI Global, Hershey, 2011), pp. 198–219Google Scholar
  15. 15.
    H. Bevrani, T. Hiyama, Intelligent Automatic Generation Control (CRC Press, New York, 2011)Google Scholar
  16. 16.
    H. Bevrani, F. Daneshfar, P. R. Daneshmand, T. Hiyama, Reinforcement learning based multi-agent LFC design concerning the integration of wind farms, in IEEE International Conference on Control Applications, Yokohama, Japan, 2010Google Scholar
  17. 17.
    H. Golpira, H. Bevrani, A framework for economic load frequency control design using modified multi-objective genetic algorithm. Electr. Power Compon. Syst. J. 42(8):788–797 (2014)Google Scholar
  18. 18.
    H. Bevrani, F. Daneshfar, T. Hiyama, A new intelligent agent-based AGC design with real-time application. IEEE Trans. Syst. Man Cybern. Part C 42(6), 994–1002 (2012)CrossRefGoogle Scholar
  19. 19.
    F. Daneshfar, H. Bevrani, Load-frequency control: a GA-based multi-agent reinforcement learning. IET Gener. Transm. Distrib. 4(1), 13–26 (2010)CrossRefGoogle Scholar
  20. 20.
    H. Bevrani, P.R. Daneshmand, P. Babahajyani, Y. Mitani, T. Hiyama, Intelligent LFC concerning high penetration of wind power: synthesis and real-time application. IEEE Trans. Sustain. Energy 5(2), 655–662 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Bevrani, T. Hiyama, H. Bevrani, Robust PID based power system stabilizer: design and real-time implementation. Electrical Power Energy Syst. 33, 179–188 (2011)CrossRefGoogle Scholar
  22. 22.
    H. Bevrani, M. Watanabe, Y. Mitani, Power System Modeling and Control, 1st edn. (Wiley-IEEE Press, New York, 2014)Google Scholar
  23. 23.
    H. Bevrani, T. Hiyama, Y. Mitani, Power system dynamic stability and voltage regulation enhancement using an optimal gain vector. Control Eng. Pract. 16(9), 1109–1119 (2008)CrossRefGoogle Scholar
  24. 24.
    H. Bevrani, T. Hiyama, On load-frequency regulation with time delays: design and real-time implementation. IEEE Trans. Energy Convers. 24, 292–300 (2009)CrossRefGoogle Scholar
  25. 25.
    Nordic Grid Code 2007 (Nordic Collection of Rules), Nordel (2007)
  26. 26.
    EirGrid Grid Code v3.5., Eirgrid (2011)
  27. 27.
    J.L. Rodriguez-Amenedo, S. Arnalte, J.C. Burgos, Automatic generation control of a wind farm with variable speed wind turbines. IEEE Trans. Energy Convers. 17(2), 279–284 (2002)CrossRefGoogle Scholar
  28. 28.
    J.B. Ekanayake, L. Holdsworth, N. Jenkins, Control of DFIG wind turbines. Power Eng. 17(2), 28–32 (2003)CrossRefGoogle Scholar
  29. 29.
    J. Morren, S.W.H. de Haan, J.A. Ferreira, Contribution of DG units to primary frequency control, in Proceedings of ICFPS, Amsterdam, The Netherlands, Nov 2005Google Scholar
  30. 30.
    J. Ekanayake, N. Jenkins, Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency. IEEE Trans. Energy Convers. 19, 800–802 (2004)CrossRefGoogle Scholar
  31. 31.
    G. Delille, B. Francois, G. Malarange, Dynamic frequency control support: a virtual inertia provided by distributed energy storage to isolated power systems, in Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010 IEEE PES, pp. 1–8, 2010Google Scholar
  32. 32.
    G. Ramtharan, J.B. Ekanayake, N. Jenkins, Frequency support from doubly fed induction generator wind turbines. IET Renew. Power Gener. 1(1), 3–9 (2007)CrossRefGoogle Scholar
  33. 33.
    T. Bevrani, Y. Ise, Miura, Virtual Synchronous Generators: A Survey and New Perspectives. Int. J. Electr. Power Energy Syst. 54, 244–254 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Kayikçi, J. Milanovic, Dynamic contribution of DFIG-based wind plants to system frequency disturbances. IEEE Trans. Power Syst. 24(2), 859–867 (2009)CrossRefGoogle Scholar
  35. 35.
    R.G. de Almeida, J.A.P. Lopes, Participation of doubly fed induction wind generators in system frequency regulation. IEEE Trans. Power Syst. 22(3), 944–950 (2007)CrossRefGoogle Scholar
  36. 36.
    J.F. Conroy, R. Watson, Frequency response capability of full converter wind turbine generators in comparison to conventional generation. IEEE Trans. Power Syst. 23(2), 649–656 (2008)CrossRefGoogle Scholar
  37. 37.
    H.T. Ma, B.H. Chowdhury, Working towards frequency regulation with wind plants: combined control approaches. IET Renew. Power Gener. 4(4), 308–316 (2010)CrossRefGoogle Scholar
  38. 38.
    K. Clark, N.W.Miller, J.J. Sanchez-Gasca, Modeling of GE wind Turbine-Generators for Grid Studies, Version 4.5 (2010)
  39. 39.
    Z. Wang, Y. Sun, G. Li, B.T. Ooi, Magnitude and frequency control of grid-connected doubly fed induction generator based on synchronised model for wind power generation. Renew. Power Gener. IET 4(3), 232–241 (2010)CrossRefGoogle Scholar
  40. 40.
    T. Kaneko, A. Uehara, T. Senjyu, A. Yona, N. Urasaki, An integrated control method for a wind farm to reduce frequency deviations in a small power system. Appl. Energy 88(4), 1049–1058 (2011)CrossRefGoogle Scholar
  41. 41.
    P. Bhatt, S.P. Ghoshal, R. Roy, Coordinated control of TCPS and SMES for frequency regulation of interconnected restructured power systems with dynamic participation from DFIG based wind farm. Renew. Energy 40(1), 40–50 (2012)Google Scholar
  42. 42.
    M.E. Mokadem, V. Courtecuisse, C. Saudemont, B. Robyns, J. Deuse, Fuzzy logic supervisor-based primary frequency control experiments of a variable-speed wind generator. IEEE Trans. Power Syst. 24(1), 407–417 (2009)CrossRefGoogle Scholar
  43. 43.
    T. Senjyu, T. Kaneko, A. Uehara, A. Yona, H. Sekine, C.-H. Kim, Output power control for large wind power penetration in small power system. Renew. Energy 34(11), 2334–2343 (2009)CrossRefGoogle Scholar
  44. 44.
    J.M. Mauricio, A. Marano, A. Gomez-Exposito, J.L.M. Ramos, Frequency regulation contribution through variable-speed wind energy conversion systems. IEEE Trans. Power Syst. 20, 1903–1913 (2005)Google Scholar
  45. 45.
    N.R. Ullah, T. Thiringer, D. Karlsson, Temporary primary frequency control support by variable speed wind turbines—potential and applications. IEEE Trans. Power Syst. 23(2), 601–612 (2008)CrossRefGoogle Scholar
  46. 46.
    F. Lingling, M. Zhixin, D. Osborn, Wind farms with HVDC delivery in load frequency control. Power Syst. IEEE Trans. 24(4), 1894–1895 (2009)CrossRefGoogle Scholar
  47. 47.
    J. Morren, J. Pierik, S.W.H. de Haan, Inertial response of variable speed wind turbines. Elect. Power Syst. Res. 76(11), 980–987 (2006)CrossRefGoogle Scholar
  48. 48.
    R.G. De Almeida, J.A.P. Lopes, Participation of Doubly fed induction wind generators in system frequency regulation. Power Syst. IEEE Trans. 22(3), 944–950 (2007)CrossRefGoogle Scholar
  49. 49.
    X. Yingcheng, T. Nengling, Review of contribution to frequency control through variable speed wind turbine. Renew. Energy 36(6), 1671–1677 (2010)CrossRefGoogle Scholar
  50. 50.
    E. Vittal et al., Varying penetration ratios of wind turbine technologies for voltage and frequency stability. Power Eng. Soc. Gen. Meet. 20, 1–6 (2008)Google Scholar
  51. 51.
    A.P. Mullane, Advanced Control of Wind Energy Conversion Systems. Ph.D. dissertation, National University of Ireland, University of College Cork, Cork, Ireland, 2004Google Scholar
  52. 52.
    M. Sathyajith, Wind Energy Fundamentals, Resource Analysis and Economics, 1st edn. (Springer Press, Heidelberg, 2006), pp. 112–114Google Scholar
  53. 53.
    H. Golpira, H. Bevrani, A.-H. Naghshbandi, An approach for coordinated AVR-PSS design in large scale interconnected power systems considering wind power penetration. IET Gener. Transm. Distrib. 6(1), 39–49 (2012)CrossRefGoogle Scholar
  54. 54.
    C. Abbey et al., Transient modeling and comparison of wind generator topologies, in IPST’05 (in Canada), pp. IPST05–131 (2005)Google Scholar
  55. 55.
    J.G. Slootweg, H. Polinder, W.L. Kling, Representing wind turbine electrical generating systems in fundamental frequency simulation. IEEE Trans. Energy Convers. 18(4), 516–524 (2003)CrossRefGoogle Scholar
  56. 56.
    J.B. Ekanayake, N. Jenkins, G. Strbac, Frequency response from wind turbines. Wind Eng. 32(6), 573–586 (2008)CrossRefGoogle Scholar
  57. 57.
    Y. Wang, G. Delille, H. Bayem, X. Guillaud, B. Francois, High wind power penetration in isolated power systems-assessment of wind inertial and primary frequency responses. IEEE Trans. Power Syst. 28(3), 2412–2420 (2013)Google Scholar
  58. 58.
    J.M. Mauricio, A. Marano, A. Gomez-Exposito, J.L. Martinez Ramos, Frequency regulation contribution through variable-speed wind conversion systems. IEEE. Trans. Power Syst. 24(1), 173–180 (2009)Google Scholar
  59. 59.
    J. Morel, H. Bevrani, T. Ishii, T. Hiyama, A robust control approach for primary frequency regulation through variable speed wind turbines. IEEJ Trans. Power Energy 130(11), 1002–1009 (2010)CrossRefGoogle Scholar
  60. 60.
    P.M. Anderson, A.A. Fouad, Power System Control and Stability (The Iowa State University Press, Ames, 1977)Google Scholar
  61. 61.
    B. Badmasti, H. Bevrani, A.H. Naghshbandi, Impacts of high wind power penetration on the frequency response considering wind power reserve. Int. J. Energy Optim. Eng. 1(3), 32–47 (2012)Google Scholar
  62. 62.
    T.H. Mohamed, J. Morel, H. Bevrani, A.A. Hassan, T. Hiyama, Model predictive based load frequency control design concerning wind turbines. Int. J. Electr. Power Energy Syst. 43(1), 859–867 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of KurdistanSanandajIran

Personalised recommendations