Advertisement

Quantitative Monitoring of Syndesmophyte Growth in Ankylosing Spondylitis Using Computed Tomography

  • Sovira Tan
  • Jianhua Yao
  • Lawrence Yao
  • Michael M. Ward
Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 17)

Abstract

Ankylosing Spondylitis, an inflammatory disease affecting mainly the spine, can be characterized by abnormal bone formation (syndesmophytes) along the margins of the intervertebral disk. Monitoring syndesmophytes evolution is challenging because of their slow growth rate, a problem compounded by the use of radiography and qualitative rating systems. To improve sensitivity to change, we designed a computer algorithm that fully quantifies syndesmophyte volume using the 3D imaging capabilities of computed tomography. The reliability of the algorithm was assessed by comparing the results obtained from 2 scans performed on the same day in 9 patients. A longitudinal study on 20 patients suggests that the method will benefit longitudinal clinical studies of syndesmophyte development and growth. After one year, the 3D algorithm showed an increase in syndesmophyte volume in 75 % of patients, while radiography showed an increase in only 15 % of patients.

Keywords

Ankylosing spondylitis syndesmophytes volume measurement. 

References

  1. 1.
    Braun, J., Sieper, J.: Ankylosing spondylitis. Lancet 369, 1379–90 (2007)CrossRefGoogle Scholar
  2. 2.
    van der Heijde, D., Landewé, R., Baraliakos, X., et al.: Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum 58, 3063–3070 (2008)CrossRefGoogle Scholar
  3. 3.
    Appel, H., Ruiz-Heiland, G., Listing, J., et al.: Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum 60, 3257–3262 (2009)CrossRefGoogle Scholar
  4. 4.
    Daoussis, D., Liossis, S.N., Solomou, E.E., et al.: Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum 62, 150–158 (2010)CrossRefGoogle Scholar
  5. 5.
    Creemers MC, Franssen MJ, van’t Hof MA, et al. Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann. Rheum. Dis. 64, 127–129 (2005)Google Scholar
  6. 6.
    Spoorenberg, A., de Vlam, K., van der Linden, S., et al.: Radiological scoring methods in ankylosing spondylitis. Reliability and change over 1 and 2 years. J Rheumatol 31, 125–132 (2004)Google Scholar
  7. 7.
    Tan, S., Yao, J., Ward, M.M., et al.: Computer aided evaluation of ankylosing spondylitis using high-resolution CT. IEEE Trans Med Imaging 27, 1252–1267 (2008)CrossRefGoogle Scholar
  8. 8.
    Tan, S., Yao, J., Yao, L., et al.: Improved precision of syndesmophyte measurement for the evaluation of ankylosing spondylitis using CT: a phantom and patient study. Phys Med Biol 57, 4683–4704 (2012)CrossRefGoogle Scholar
  9. 9.
    Mastmeyer, A., Engelke, K., Fuchs, C., Kalender, W.A.: A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Med Image Anal 10, 560–577 (2006)CrossRefGoogle Scholar
  10. 10.
    J. Yao, S.D. O’Connor, R.M. Summers, Automated spinal column extraction and partitioning. In: Proceedings of the IEEE International Symposium on Biomedical Imaging, 390–393 (2006)Google Scholar
  11. 11.
    Aslan, M.S., Ali, A., Rara, H., Farag, A.A.: An automated vertebra identification and segmentation in CT images. In: Proceedings of the IEEE International Conference on Image Processing, 233–236 (2010)Google Scholar
  12. 12.
    Sethian, J.A.: Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science. Cambridge University Press, Cambridge (1999)MATHGoogle Scholar
  13. 13.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int J Comput Vis 22, 61–79 (1997)CrossRefMATHGoogle Scholar
  14. 14.
    Koenderink J J 1990 Solid Shape: The MIT PressGoogle Scholar
  15. 15.
    Besl, P.J., McKay, N.D.: A method for registration of 3D shapes. IEEE Trans Pattern Anal Mach Intell 14, 56–239 (1992)Google Scholar
  16. 16.
    Tan, S., Yao, J., Yao, L.: Summers R M and Ward M M Vertebral surface registration using ridgelines/crestlines Proceedings of SPIEMedical. Imaging 6914, 69140H (2008)Google Scholar
  17. 17.
    Tan, S., Yao, J., Flynn, J.A., et al.: Quantitative measurement of syndesmophyte volume and height in ankylosing spondylitis using CT. Ann Rheum Dis 73, 544–550 (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sovira Tan
    • 1
  • Jianhua Yao
    • 2
  • Lawrence Yao
    • 2
  • Michael M. Ward
    • 1
  1. 1.National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaUSA
  2. 2.Radiology and Imaging Sciences, Clinical CenterNational Institutes of HealthBethesdaUSA

Personalised recommendations