Comparison of Manual and Computerized Measurements of Sagittal Vertebral Inclination in MR Images

Conference paper
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 17)

Abstract

In this study, sagittal vertebral inclination (SVI) was systematically measured by three observers for \(28\) vertebrae (T4-L5) from one normal and one scoliotic magnetic resonance (MR) spine image using six manual and two computerized measurements. Manual measurements were performed by superior and inferior tangents, anterior and posterior tangents, and mid-endplate and mid-wall lines. Computerized measurements were performed by automatically evaluating the symmetry of vertebral anatomy in sagittal cross-sections and volumetric images. The mid-wall lines were the manual measurements with the lowest intra- and inter-observer variability (\(1.4^\circ \!\) and \(1.9^\circ \!\) standard deviation, SD). The strongest inter-method agreement was found between the mid-wall lines and posterior tangents (\(2.0^\circ \!\) SD). Computerized measurements did not yield intra- and inter-observer variability (\(2.8^\circ \!\) and \(3.8^\circ \!\) SD) as low as the mid-wall lines, but were still comparable to the intra- and inter-observer variability of the superior (\(2.6^\circ \!\) and \(3.7^\circ \!\) SD) and inferior (\(3.2^\circ \!\) and \(4.5^\circ \!\) SD) tangents.

Notes

Acknowledgments

This work has been supported by the Slovenian Research Agency under grants P2-0232, J7-2264, L2-7381, and L2-2023. The authors thank R. Vengust (University Medical Centre Ljubljana, Slovenia) and D. Štern (University of Ljubljana, Slovenia) for performing manual measurements.

References

  1. 1.
    Singer, K., Edmondston, S., Day, R., Breidahl, W.: Computer-assisted curvature assessment and Cobb angle determination of the thoracic kyphosis: an in vivo and in vitro comparison. Spine 19(12), 1381–1384 (1994)CrossRefGoogle Scholar
  2. 2.
    Chernukha, K., Daffner, R., Reigel, D.: Lumbar lordosis measurement: a new method versus Cobb technique. Spine 23(1), 74–79 (1998)CrossRefGoogle Scholar
  3. 3.
    Harrison, D., Cailliet, R., Janik, T., Troyanovich, S., Harrison, D., Holland, B.: Elliptical modeling of the sagittal lumbar lordosis and segmental rotation angles as a method to discriminate between normal and low back pain subjects. J. Spinal Disord. 11(5), 430–439 (1998)CrossRefGoogle Scholar
  4. 4.
    Chen, Y.L.: Vertebral centroid measurement of lumbar lordosis compared with the Cobb technique. Spine 24(17), 1786–1790 (1999)CrossRefGoogle Scholar
  5. 5.
    Cobb, J.: Outline for the study of scoliosis. Am. Acad. Orthop. Surg. Instr. Course Lectur. 5, 261–275 (1948)Google Scholar
  6. 6.
    Gore, D., Sepic, S., Gardner, G.: Roentgenographic findings of the cervical spine in asymptomatic people. Spine 11(6), 521–524 (1986)CrossRefGoogle Scholar
  7. 7.
    Harrison, D., Janik, T., Troyanovich, S., Holland, B.: Comparisons of lordotic cervical spine curvatures to a theoretical ideal model of the static sagittal cervical spine. Spine 21(6), 667–675 (1996)CrossRefGoogle Scholar
  8. 8.
    Schuler, T., Subach, B., Branch, C., Foley, K., Burkus, J.: Lumbar spine study group: segmental lumbar lordosis: manual versus computer-assisted measurement using seven different techniques. J. Spinal Disord. Tech. 17(5), 372–379 (2004)CrossRefGoogle Scholar
  9. 9.
    Polly, D., Kilkelly, F., McHale, K., Asplund, L., Mulligan, M., Chang, A.: Measurement of lumbar lordosis: evaluation of intraobserver, interobserver, and technique variability. Spine 21(13), 1530–1535 (1996)CrossRefGoogle Scholar
  10. 10.
    Goh, S., Price, R., Leedman, P., Singer, K.: A comparison of three methods for measuring thoracic kyphosis: implications for clinical studies. Rheumatology 39(3), 310–315 (2000)CrossRefGoogle Scholar
  11. 11.
    Mac-Thiong, J.M., Labelle, H., Charlebois, M., Huot, M.P., de Guise, J.: Sagittal plane analysis of the spine and pelvis in adolescent idiopathic scoliosis according to the coronal curve type. Spine 28(13), 1404–1409 (2003)Google Scholar
  12. 12.
    Stagnara, P., De Mauroy, J., Dran, G., Gonon, G., Costanzo, G., Dimnet, J., Pasquet, A.: Reciprocal angulation of vertebral bodies in a sagittal plane: approach to references for the evaluation of kyphosis and lordosis. Spine 7(4), 335–342 (1982)CrossRefGoogle Scholar
  13. 13.
    Bernhardt, M., Bridwell, K.: Segmental analysis of the sagittal plane alignment of the normal thoracic and lumbar spines and thoracolumbar junction. Spine 14(7), 717–721 (1989)CrossRefGoogle Scholar
  14. 14.
    Korovessis, P., Stamatakis, M., Baikousis, A.: Reciprocal angulation of vertebral bodies in the sagittal plane in an asymptomatic Greek population. Spine 23(6), 700–704 (1998)CrossRefGoogle Scholar
  15. 15.
    Street, J., Lenehan, B., Albietz, J., Bishop, P., Dvorak, M., Fisher, C.: Spine Trauma Study Group: Intraobserver and interobserver reliabilty of measures of kyphosis in thoracolumbar fractures. Spine J. 9(6), 464–469 (2009)CrossRefGoogle Scholar
  16. 16.
    Birchall, D., Hughes, D., Hindle, J., Robinson, L., Williamson, J.: Measurement of vertebral rotation in adolescent idiopathic scoliosis using three-dimensional magnetic resonance imaging. Spine 22(20), 2403–2407 (1997)CrossRefGoogle Scholar
  17. 17.
    Haughton, V., Rogers, B., Meyerand, E., Resnick, D.: Measuring the axial rotation of lumbar vertebrae in vivo with MR imaging. Am. J. Neuroradiol. 23(7), 1110–1116 (2002)Google Scholar
  18. 18.
    Rogers, B., Haughton, V., Arfanakis, K., Meyerand, M.: Application of image registration to measurement of intervertebral rotation in the lumbar spine. Magn. Reson. Med. 48(6), 1072–1075 (2002)CrossRefGoogle Scholar
  19. 19.
    Birchall, D., Hughes, D., Gregson, B., Williamson, B.: Demonstration of vertebral and disc mechanical torsion in adolescent idiopathic scoliosis using three-dimensional MR imaging. Eur. Spine J. 14(2), 123–129 (2005)CrossRefGoogle Scholar
  20. 20.
    Kouwenhoven, J.W., Bartels, L., Vincken, K., Viergever, M., Verbout, A., Delhaas, T., Castelein, R.: The relation between organ anatomy and pre-existent vertebral rotation in the normal spine: magnetic resonance imaging study in humans with situs inversus totalis. Spine 32(10), 1123–1128 (2007)CrossRefGoogle Scholar
  21. 21.
    Vrtovec, T., Pernuš, F., Likar, B.: Determination of axial vertebral rotation in MR images: comparison of four manual and a computerized method. Eur. Spine J. 19(5), 774–781 (2010)CrossRefGoogle Scholar
  22. 22.
    Vrtovec, T., Likar, B., Pernuš, F.: Manual and computerized measurement of coronal vertebral inclination in MRI images: a pilot study. Clin. Radiol. 68(8), 807–814 (2013)CrossRefGoogle Scholar
  23. 23.
    Vrtovec, T., Pernuš, F., Likar, B.: A symmetry-based method for the determination of vertebral rotation in 3D Lecture Notes in Computer Science. Lecture Notes in Computer Science, pp. 942–950. Springer, Berlin (2008)Google Scholar
  24. 24.
    Vrtovec, T., Likar, B., Pernuš, F.: Manual and computerized measurement of sagittal vertebral inclination in computed tomography images. Spine 36(13), E875–E881 (2011)CrossRefGoogle Scholar
  25. 25.
    Vrtovec, T., Vengust, R., Likar, B., Pernuš, F.: Analysis of four manual and a computerized method for measuring axial vertebral rotation in computed tomography images. Spine 35(12), E535–E541 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tomaž Vrtovec
    • 1
  • Franjo Pernuš
    • 1
  • Boštjan Likar
    • 1
  1. 1.Faculty of Electrical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations