Skip to main content

Predicting Student Performance in Solving Parameterized Exercises

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 8474)

Abstract

In this paper, we compare pioneer methods of educational data mining field with recommender systems techniques for predicting student performance. Additionally, we study the importance of including students’ attempt time sequences of parameterized exercises. The approaches we use are Bayesian Knowledge Tracing (BKT), Performance Factor Analysis (PFA), Bayesian Probabilistic Tensor Factorization (BPTF), and Bayesian Probabilistic Matrix Factorization (BPMF). The last two approaches are from the recommender system’s field. We approach the problem using question-level Knowledge Components (KCs) and test the methods using cross-validation. In this work, we focus on predicting students’ performance in parameterized exercises. Our experiments shows that advanced recommender system techniques are as accurate as the pioneer methods in predicting student performance. Also, our studies show the importance of considering time sequence of students’ attempts to achieve the desirable accuracy.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-07221-0_62
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-07221-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brusilovsky, P., Sosnovsky, S.: Individualized exercises for self-assessment of programming knowledge: An evaluation of quizpack. ACM Journal on Educational Resources in Computing 5(3), Article No. 6 (2005)

    CrossRef  Google Scholar 

  2. Corbett, A.T., Anderson, J.R.: Knowledge tracing: Modeling the acquisition of procedural knowledge. User Modeling and User-Adapted Interaction 4(4), 253–278 (1994)

    CrossRef  Google Scholar 

  3. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: An update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)

    CrossRef  Google Scholar 

  4. Hsiao, I.-H., Sosnovsky, S., Brusilovsky, P.: Adaptive navigation support for parameterized questions in object-oriented programming. In: Cress, U., Dimitrova, V., Specht, M. (eds.) EC-TEL 2009. LNCS, vol. 5794, pp. 88–98. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  5. Kashy, E., Thoennessen, M., Tsai, Y., Davis, N.E., Wolfe, S.L.: Using networked tools to enhanse student success rates in large classes. In: FIE, vol. I, pp. 233–237. Stipes Publishing L.L.C., (1997)

    Google Scholar 

  6. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM 51(3), 455–500 (2009)

    CrossRef  MATH  MathSciNet  Google Scholar 

  7. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    CrossRef  Google Scholar 

  8. Kortemeyer, G., Kashy, E., Benenson, W., Bauer, W.: Experiences using the open-source learning content management and assessment system lon-capa in introductory physics courses. American Journal of Physics 76(438) (2008)

    Google Scholar 

  9. Minaei-Bidgoli, B., Kashy, D.A., Kortemeyer, G., Punch, W.F.: Predicting student performance: An application of data mining methods with an educational web-based system. In: FIE 2003 (2003)

    Google Scholar 

  10. Parra, D., Sahebi, S.: Recommender systems: Sources of knowledge and evaluation metrics. In: Velásquez, J.D., Palade, V., Jain, L.C. (eds.) Advanced Techniques in Web Intelligence-2. SCI, vol. 452, pp. 149–175. Springer, Heidelberg (2013)

    CrossRef  Google Scholar 

  11. Pavlik, P.I., Cen, H., Koedinger, K.R.: Performance factors analysis-a new alternative to knowledge tracing. In: AIEd, pp. 531–538 (2009)

    Google Scholar 

  12. Thai-Nghe, N., Horvath, T., Schmidt-Thieme, L.: Context-aware factorization for personalized student’s task recommendation. In: Int. Workshop on Personalization Approaches in Learning Environments, vol. 732, pp. 13–18 (2011)

    Google Scholar 

  13. Xiong, L., Chen, X., Huang, T.-K., Schneider, J.G., Carbonell, J.G.: Temporal collaborative filtering with bayesian probabilistic tensor factorization. In: SDM, vol. 10, pp. 211–222 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Sahebi, S., Huang, Y., Brusilovsky, P. (2014). Predicting Student Performance in Solving Parameterized Exercises. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds) Intelligent Tutoring Systems. ITS 2014. Lecture Notes in Computer Science, vol 8474. Springer, Cham. https://doi.org/10.1007/978-3-319-07221-0_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07221-0_62

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07220-3

  • Online ISBN: 978-3-319-07221-0

  • eBook Packages: Computer ScienceComputer Science (R0)