Skip to main content

Introduction and Theoretical Background

  • Chapter
  • First Online:
Third generation SUSY and t¯t +Z production

Part of the book series: Springer Theses ((Springer Theses))

  • 291 Accesses

Abstract

The Large Hadron Collider (LHC) and its experiments are some of the largest and most complex constructions in human history.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although only the first generation \(u\)-quark, \(d\)-quark and electron make up the majority of matter.

  2. 2.

    The remainder of this section will closely follow prescriptions taken from [5, 11, 12]. These references should serve as a good introduction for the non-expert.

  3. 3.

    This choice is made to eliminate the unwanted Goldstone boson and the troublesome interaction terms it introduces. The specific gauge choice is \(\theta = - \tan {\varphi _1/\varphi _2}\), which in the transformation \(\varphi \rightarrow \varphi '\) results in \(\varphi '\) being real (\(\varphi '_{2}=0\)).

  4. 4.

    The description given in this section closely follows that of [16].

References

  1. T. Aoyama, M. Hayakawa, T. Kinoshita, M. Nio, Tenth-order QED contribution to the electron g-2 and an improved value of the fine structure constant. Phys. Rev. Lett. 109, 111807 (2012). arXiv:1205.5368 [hep-ph]

    Article  ADS  Google Scholar 

  2. K. Garrett, G. Duda, Dark matter: a primer. Adv. Astron. 2011, 968283 (2011). arXiv:1006.2483 [hep-ph]

    Article  ADS  Google Scholar 

  3. Particle Data Group Collaboration, J. Beringer et al., Phys. Rev. D86, 010001 (2012)

    Google Scholar 

  4. M. Kobayashi, T. Maskawa, \(CP\)-violation in the renormalizable theory of weak interaction. Progress Theoret. Phys. 49(2), 652–657 (1973)

    Article  ADS  Google Scholar 

  5. D. Griffiths, Introduction to Elementary Particles (Wiley-VCH Verlag GmbH, Weinheim, 2008). http://dx.doi.org/10.1002/9783527618460.ch7

  6. K. Nakamura et al., Particle data group collaboration. JPG 37, 075021 (2010). http://pdg.lbl.gov

  7. ATLAS Collaboration Collaboration, G. Aad et al., Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, 1–29 (2012). arXiv:1207.7214 [hep-ex]

  8. CMS Collaboration Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B716, 30–61 (2012). arXiv:1207.7235 [hep-ex]

  9. ATLAS Collaboration Collaboration, G. Aad et al., Evidence for the spin-0 nature of the Higgs boson using ATLAS data, (2013). arXiv:1307.1432 [hep-ex]

  10. ATLAS Collaboration Collaboration, G. Aad et al., Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, arXiv:1307.1427 [hep-ex]

  11. I.J.R . Aitchison, A.J.G Hey, Gauge theories in particle physics (Adam Hilger Limited, Bristol, 1982)

    Google Scholar 

  12. F. Halzen, A. Martin, Quark and Leptons: an introductory course in modern particle physics (Wiley India Pvt. Limited, New Delhi, 2008). http://books.google.co.uk/books?id=ITQy9G62H0gC

  13. S.L. Glashow, Partial-symmetries of weak interactions, Nucl. Phys. 22(4), 579–588 (1961)

    Google Scholar 

  14. S. Weinberg, A model of Leptons. Phys. Rev. Lett. 19, 1264–1266 (1967)

    Google Scholar 

  15. A. Salam, Gauge unification of fundamental forces. Rev. Mod. Phys. 52, 525–538 (1980)

    Google Scholar 

  16. S.P. Martin, A Supersymmetry Primer (1997). arXiv:hep-ph/9709356

  17. SNO Collaboration Collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino observatory. Phys. Rev. Lett. 89, 011301 (2002). arXiv:nucl-ex/0204008 [nucl-ex]

    Google Scholar 

  18. S. Weinberg, Implications of dynamical symmetry breaking. Phys. Rev. D13, 974–996 (1976)

    ADS  Google Scholar 

  19. E. Gildener, Gauge symmetry hierarchies. Phys. Rev. D14, 1667 (1976)

    ADS  Google Scholar 

  20. S. Weinberg, Implications of dynamical symmetry breaking: an addendum. Phys. Rev. D19, 1277–1280 (1979)

    ADS  Google Scholar 

  21. L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory. Phys. Rev. D20, 2619–2625 (1979)

    ADS  Google Scholar 

  22. ALEPH Collaboration, CDF Collaboration, D0 Collaboration, DELPHI Collaboration, L3 Collaboration, OPAL Collaboration, SLD Collaboration, LEP Electroweak Working Group, Tevatron Electroweak Working Group, SLD Electroweak and Heavy Flavour Groups Collaboration, Precision Electroweak Measurements and Constraints on the Standard Model, (2010). arXiv:1012.2367 [hep-ex]

  23. B.W. Lee, C. Quigg, H. Thacker, The strength of weak interactions at very high-energies and the Higgs Boson mass. Phys. Rev. Lett. 38, 883–885 (1977)

    Article  ADS  Google Scholar 

  24. B.W. Lee, C. Quigg, H. Thacker, Weak interactions at very high-energies: the role of the Higgs Boson mass. Phys. Rev. D16, 1519 (1977)

    ADS  Google Scholar 

  25. A. Nima, D. Savas, D. Gia, The hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429(34), 263–272 (1998)

    Google Scholar 

  26. O. Klein, Quantentheorie und fnfdimensionale Relativittstheorie. Zeitschrift fr Physik 37(12), 895–906 (1926). http://dx.doi.org/10.1007/BF01397481

  27. H. Miyazawa, Baryon number changing currents. Prog. Theor. Phys. 36(6), 1266–1276 (1966)

    Article  ADS  Google Scholar 

  28. R. Ramond, Dual theory for free fermions. Phys. Rev. D3, 2415–2418 (1971)

    ADS  MathSciNet  Google Scholar 

  29. Yu.A. Golfand, E.P. Likhtman, JETP Lett. 13, 323 (1971)

    Google Scholar 

  30. A. Neveu, J.H. Schwartz, Nucl. Phys. B31, 86 (1971)

    Google Scholar 

  31. A. Neveu, J.H. Schwartz, Phys. Rev. D4, 1109 (1971)

    Google Scholar 

  32. P. Ramond, Phys. Rev. D3, 2415 (1971)

    Google Scholar 

  33. D.V. Volkov, V.P. Akulov, Phys. Lett. B46, 109 (1973)

    Google Scholar 

  34. J. Wess, B. Zumino, Phys. Lett. B49, 52 (1974)

    Google Scholar 

  35. J. Wess, B. Zumino. Nucl. Phys. B70, 39 (1974)

    Google Scholar 

  36. A. Neveu, J. Schwarz, Factorizable dual model of pions. Nucl. Phys. B31, 86–112 (1971)

    Article  ADS  Google Scholar 

  37. A. Neveu, J. Schwarz, Quark model of dual pions. Phys. Rev. D4, 1109–1111 (1971)

    ADS  Google Scholar 

  38. J. Gervais, B. Sakita, Field theory interpretation of supergauges in dual models. Nucl. Phys. B34, 632–639 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  39. D. Volkov, V. Akulov, Is the neutrino a Goldstone particle? Phys. Lett. B46, 109–110 (1973)

    Article  ADS  Google Scholar 

  40. J. Wess, B. Zumino, A Lagrangian model invariant under supergauge transformations. Phys. Lett. B49, 52 (1974)

    Article  ADS  Google Scholar 

  41. J. Wess, B. Zumino, Supergauge transformations in four-dimensions. Nucl. Phys. B70, 39–50 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions. Phys. Lett. B64, 159 (1976)

    Article  ADS  Google Scholar 

  43. P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions. Phys. Lett. B69, 489 (1977)

    Article  ADS  Google Scholar 

  44. G.R. Farrar, P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Phys. Lett. B76, 575–579 (1978)

    Article  ADS  Google Scholar 

  45. P. Fayet, Relations between the masses of the superpartners of Leptons and Quarks, the Goldstino couplings and the neutral currents. Phys. Lett. B84, 416 (1979)

    Article  ADS  Google Scholar 

  46. S. Dimopoulos, H. Georgi, Softly broken supersymmetry and SU(5). Nucl. Phys. B193, 150 (1981)

    Article  ADS  Google Scholar 

  47. A . Ugo, de B. Wim, F. Hermann, Comparison of grand unified theories with electroweak and strong coupling constants measured at LEP. Phys. Lett. B 260(34), 447–455 (1991)

    Google Scholar 

  48. N. Pran, F.P. Pavel, Proton stability in grand unified theories, in strings and in branes. Phys. Rep. 441(56), 191–317 (2007)

    Google Scholar 

  49. A.H. Chamseddine, R. Arnowitt, P. Nath, Locally supersymmetric grand unification. Phys. Rev. Lett. 49, 970 (1982)

    Article  ADS  Google Scholar 

  50. R. Barbieri, S. Ferrara, C.A. Savoy, Gauge models with spontaneously broken local supersymmetry. Phys. Lett. B119, 343 (1982)

    Article  ADS  Google Scholar 

  51. L.E. Ibanez, Locally supersymmetric SU(5) grand unification. Phys. Lett. B118, 73 (1982)

    Article  ADS  Google Scholar 

  52. L.J. Hall, J.D. Lykken, S. Weinberg, Supergravity as the messenger of supersymmetry breaking. Phys. Rev. D27, 2359–2378 (1983)

    ADS  Google Scholar 

  53. N. Ohta, Grand unified theories based on local supersymmetry. Prog. Theor. Phys. 70, 542 (1983)

    Article  ADS  Google Scholar 

  54. G.L. Kane, C.F. Kolda, L. Roszkowski, J.D. Wells, Study of constrained minimal supersymmetry. Phys. Rev. D49, 6173–6210 (1994)

    ADS  Google Scholar 

  55. LHCb Collaboration Collaboration, R. Aaij et al., Implications of LHCb measurements and future prospects. Eur. Phys. J. C73, 2373 (2013). arXiv:1208.3355 [hep-ex]

  56. F. Mahmoudi, Direct and indirect searches for new physics, (2012). arXiv:1205.3099 [hep-ph]

  57. Muon G-2 Collaboration Collaboration, G. Bennett et al., Final report of the muon E821 anomalous magnetic moment measurement at BNL. Phys. Rev. D73, 072003(2006). arXiv:hep-ex/0602035 [hep-ex]

  58. P. Bechtle, T. Bringmann, K. Desch, H. Dreiner, M. Hamer et al., Constrained supersymmetry after two years of LHC data: a global view with Fittino. JHEP 1206, 098 (2012). arXiv:1204.4199 [hep-ph]

    Article  ADS  Google Scholar 

  59. O. Buchmueller, R. Cavanaugh, A. De Roeck, M. Dolan, J. Ellis et al., Higgs and supersymmetry. Eur. Phys. J. C72, 2020 (2012). arXiv:1112.3564 [hep-ph]

    Article  ADS  Google Scholar 

  60. K.A. Olive, Searching for supersymmetric dark matter, (2002). arXiv:hep-ph/0208092 [hep-ph]

  61. WMAP Collaboration Collaboration, E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation. Astrophys. J. Suppl. 192, 18 (2011). arXiv:1001.4538 [astro-ph.CO]

  62. C.D.F. Collaboration, Inclusive search for Squark and Gluino production in \(p\bar{p}\) collisions at \(\sqrt{s}\) = 1.96-TeV. Phys. Rev. Lett. 102, 121801 (2009). arXiv:0811.2512 [hep-ex]

    Article  Google Scholar 

  63. D0 Collaboration, Search for squarks and gluinos in events with jets and missing transverse energy using 2.1 \(fb^{-1}\) of \(p \bar{p}\) collision data at \(\sqrt{s}\) = 1.96- TeV. Phys. Lett. B660, 449–457 (2008). arXiv:0712.3805 [hep-ex]

  64. Searches for supersymmetric particles in e + e- collisions up to 208 GeV and interpretation of the results within the MSSM. Eur. Phy. J. C: Part. Fields 31(4), 421–479 (2003). http://dx.doi.org/10.1140/epjc/s2003-01355-5

  65. ALEPH Collaboration Collaboration, A. Heister et al., Absolute lower limits on the masses of selectrons and sneutrinos in the MSSM. Phys. Lett. B544, 73–88 (2002). arXiv:hep-ex/0207056 [hep-ex]

  66. H. Baer, V. Barger, A. Mustafayev, Implications of a 125 GeV Higgs scalar for LHC SUSY and neutralino dark matter searches. Phys. Rev. D85, 075010 (2012). arXiv:1112.3017 [hep-ph]

    ADS  Google Scholar 

  67. L.J. Hall, D. Pinner, J.T. Ruderman, A natural SUSY Higgs near 126 GeV. JHEP 1204, 131 (2012). arXiv:1112.2703 [hep-ph]

    Article  ADS  Google Scholar 

  68. P. Draper, P. Meade, M. Reece, D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking. Phys. Rev. D85, 095007 (2012). arXiv:1112.3068 [hep-ph]

    ADS  Google Scholar 

  69. A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput. Phys. Commun. 176, 426–455 (2007). arXiv:hep-ph/0211331 [hep-ph]

  70. M. Frank, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak et al., The Higgs Boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach. JHEP 0702, 047 (2007). arXiv:hep-ph/0611326 [hep-ph]

    Article  ADS  Google Scholar 

  71. G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Towards high precision predictions for the MSSM Higgs sector. Eur. Phys. J. C28, 133–143 (2003). arXiv:hep-ph/0212020 [hep-ph]

  72. S. Heinemeyer, W. Hollik, G. Weiglein, The masses of the neutral CP—even Higgs bosons in the MSSM: accurate analysis at the two loop level. Eur. Phys. J. C9, 343–366 (1999). arXiv:hep-ph/9812472 [hep-ph]

  73. S. Heinemeyer, W. Hollik, G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM. Comput. Phys. Commun. 124, 76–89 (2000). arXiv:hep-ph/9812320 [hep-ph]

  74. ATLAS Collaboration, Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum using 4.7 \(fb^{-1}\) of \(\sqrt{s}=7\) TeV proton-proton collision data. Phys. Rev. D 87, 012008 (2013). 1208.0949

    Google Scholar 

  75. CMS Collaboration Collaboration, S. Chatrchyan et al., Inclusive search for supersymmetry using the razor variables in \(pp\) collisions at \(\sqrt{s}=7\) TeV, arXiv:1212.6961 [hep-ex]

  76. CMS Collaboration Collaboration, S. Chatrchyan et al., Search for supersymmetry in hadronic final states using MT2 in \(pp\) collisions at \(\sqrt{s} = 7\) TeV. JHEP 1210, 018 (2012). arXiv:1207.1798 [hep-ex]

  77. CMS Collaboration Collaboration, S. Chatrchyan et al., Search for supersymmetry at the LHC in events with jets and missing transverse energy. Phys. Rev. Lett. 107, 221804 (2011). arXiv:1109.2352 [hep-ex]

  78. https://twiki.cern.ch/twiki/bin/view/CMSPublic/SUSYSMSSummaryPlots7TeV

  79. https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults

  80. Search for squarks and gluinos with the ATLAS detector in final states with jets and missing transverse momentum and 20.3 fb\(^{-1}\) of \(\sqrt{s}=8\) TeV proton-proton collision data, Techical Report ATLAS-CONF-2013-047, CERN, Geneva, May, 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josh McFayden .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McFayden, J. (2014). Introduction and Theoretical Background. In: Third generation SUSY and t¯t +Z production. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-07191-6_1

Download citation

Publish with us

Policies and ethics