Advertisement

On Convergence of Evolutionary Algorithms Powered by Non-random Generators

  • Ivan Zelinka
  • Donald Davendra
  • Roman Senkerik
  • Michal Pluhacek
  • Zuzana Kominková Oplatková
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8467)

Abstract

Inherent part of evolutionary algorithms that are based on Darwin theory of evolution and Mendel theory of genetic heritage, are random processes that are used in every evolutionary algorithm like genetic algorithms etc. In this paper we present experiments (based on our previous) of selected evolutionary algorithms and test functions demonstrating impact of non-random generators on performance of the evolutionary algorithms. In our experiments we used differential evolution and SOMA algorithms with functions Griewangk and Rastrigin. We use n periodical deterministic processes (based on deterministic chaos principles) instead of pseudorandom number generators and compare performance of evolutionary algorithms powered by those processes and by pseudorandom number generators. Results presented here has to be understand like numerical demonstration rather than mathematical proofs. Our results (reported sooner and here) suggest hypothesis that certain class of deterministic processes can be used instead of random number generators without lowering the performance of evolutionary algorithms.

Keywords

evolutionary algorithms non-random generators pseudorandom generators deterministic chaos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zelinka, I., Senkerik, R., Pluhacek, M.: Do Evolutionary Algorithms Indeed Require Randomness? In: IEEE Congress on Evolutionary Computation, Cancun, Mexico, pp. 2283–2289 (2013)Google Scholar
  2. 2.
    Zelinka, I., Chadli, M., Davendra, D., Senkerik, R., Pluhacek, M., Lampinen, J.: Hidden Periodicity - Chaos Dependance on Numerical Precision. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 47–59. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  3. 3.
    Zelinka, I., Chadli, M., Davendra, D., Senkerik, R., Pluhacek, M., Lampinen, J.: Do Evolutionary Algorithms Indeed Require Random Numbers? Extended Study. In: Zelinka, I., Chen, G., Rössler, O.E., Snasel, V., Abraham, A. (eds.) Nostradamus 2013: Prediction, Model. & Analysis. AISC, vol. 210, pp. 61–75. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  4. 4.
    Zelinka, I., Celikovsky, S., Richter, H., Chen, G.: Evolutionary Algorithms and Chaotic Systems, 550S p. Springer, Germany (2010)Google Scholar
  5. 5.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)CrossRefGoogle Scholar
  6. 6.
    Pluhacek, M., Senkerik, R., Davendra, D., Kominkova Oplatkova, Z., Zelinka, I.: On the behavior and performance of chaos driven PSO algorithm with inertia weight. Computers and Mathematics with Applications 66(2), 122–134 (2013)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Pluhacek, M., Budikova, V., Senkerik, R., Oplatkova, Z., Zelinka, I.: Extended Initial Study on the Performance of Enhanced PSO Algorithm with Lozi Chaotic Map. In: Zelinka, I., Snasel, V., Rössler, O.E., Abraham, A., Corchado, E.S. (eds.) Nostradamus: Mod. Meth. of Prediction, Modeling. AISC, vol. 192, pp. 167–177. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Pluhacek, M., Budikova, V., Senkerik, R., Oplatkova, Z., Zelinka, I.: On the Performance of Enhanced PSO algorithm with Lozi Chaotic Map an Initial Study. In: Proceedings of 18th International Conference on Soft Computing - MENDEL 2012, pp. 40–45 (2012) ISBN 978-80-214-4540-6Google Scholar
  9. 9.
    Persohn, K.J., Povinelli, R.J.: Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos, Solitons and Fractals 45, 238–245 (2012)CrossRefGoogle Scholar
  10. 10.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Computers and Mathematics with Applications 60(4), 1088–1104 (2010) ISSN 0898-1221Google Scholar
  11. 11.
    Senkerik, R., Davendra, D., Zelinka, I., Oplatkova, Z., Pluhacek, M.: Optimization of the Batch Reactor by Means of Chaos Driven Differential Evolution. In: Snasel, V., Abraham, A., Corchado, E.S. (eds.) SOCO Models in Industrial & Environmental Appl. AISC, vol. 188, pp. 93–102. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  12. 12.
    Lozi, R.: Emergence of Randomness from Chaos. International Journal of Bifurcation and Chaos 22(2), 1250021 (2012), doi:10.1142/S0218127412500216 Google Scholar
  13. 13.
    Wang, X.-Y., Yang, L.: Design of Pseudo-Random Bit Generator Based On Chaotic Maps. International Journal of Modern Physics B 26(32), 1250208 (9 pages) (2012), doi:10.1142/S0217979212502086Google Scholar
  14. 14.
    Zhang, S.Y., Xingsheng, L.G.: A hybrid co-evolutionary cultural algorithm based on particle swarm optimization for solving global optimization problems. In: International Conference on Life System Modeling and Simulation/International Conference on Intelligent Computing for Sustainable Energy and Environment (LSMS-ICSEE), Wuxi, PEOPLES R CHINA, September 17-20 (2010)Google Scholar
  15. 15.
    Hong, W.-C., Dong, Y., Zhang, W.Y., Chen, L.-Y., Panigrahi, B. K.: Cyclic electric load forecasting by seasonal SVR with chaotic genetic algorithm. International Journal of Electrical Power and Energy Sysytems 44(1), 604–614, doi:10.1016/j.ijepes.2012.08.010Google Scholar
  16. 16.
    Zelinka, I.: SOMA – Self Organizing Migrating Algorithm. In: Babu, B.V., Onwubolu, G. (eds.) New Optimization Techniques in Engineering, pp. 167–218. Springer, New York (2004)CrossRefGoogle Scholar
  17. 17.
    Price, K.: An Introduction to Differential Evolution. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 79–108. McGraw-Hill, London (1999)Google Scholar
  18. 18.
    Glover, F., Laguna, M., Mart, R.: Scatter Search. In: Ghosh, A., Tsutsui, S. (eds.) Advances in Evolutionary Computation: Theory and Applications, pp. 519–537. Springer, New York (2003)CrossRefGoogle Scholar
  19. 19.
    Beyer, H.G.: Theory of Evolution Strategies. Springer, New York (2001)CrossRefGoogle Scholar
  20. 20.
    Holland, J.H.: Genetic Algorithms. Scientific American, 44–50 (July 1992)Google Scholar
  21. 21.
    Clerc, M.: Particle Swarm Optimization. ISTE Publishing Company (2006) ISBN 1905209045Google Scholar
  22. 22.
    Matousek, R.: HC12: The Principle of CUDA Implementation. In: Matousek (ed.) 16th International Conference on Soft Computing, MENDEL 2010, Brno, pp. 303–308 (2010)Google Scholar
  23. 23.
    Matousek, R., Zampachova, E.: Promising GAHC and HC12 algorithms in global optimization tasks. Journal Optimization Methods & Software 26(3), 405–419 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Matousek, R.: GAHC: Improved Genetic Algorithm. In: Krasnogor, N., Nicosia, G., Pavone, M., Pelta, D. (eds.) Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). SCI, vol. 129, pp. 507–520. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Zelinka, I., Davendra, D., Senkerik, R., Jasek, R., Oplatkova, Z.: Analytical Programming - a Novel Approach for Evolutionary Synthesis of Symbolic Structures. In: Kita, E. (ed.) Evolutionary Algorithms. InTech (2011), http://www.intechopen.com/books/evolutionary-algorithms/analytical-programming-a-novel-approach-for-evolutionary-synthesis-of-symbolic-structures, doi:10.5772/16166, ISBN: 978-953-307-171-8
  26. 26.
    Zelinka, I., Senkerik, R., Pluhacek, M.: Evolutionary Algorithms Powered by Nonrandom Processes. In: 19th International Conference on Soft Computing, MENDEL 2013 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ivan Zelinka
    • 1
  • Donald Davendra
    • 1
  • Roman Senkerik
    • 2
  • Michal Pluhacek
    • 2
  • Zuzana Kominková Oplatková
    • 2
  1. 1.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstrava-PorubaCzech Republic
  2. 2.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations