Advertisement

Aspects of the Selection of the Structure and Parameters of Controllers Using Selected Population Based Algorithms

  • Jacek Szczypta
  • Krystian Łapa
  • Zhifei Shao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8467)

Abstract

In this paper we propose a new approach for selection of the structure and parameters of the control system. Proposed approach is based on the selected population-based algorithms. In this approach we considered a combination of the genetic algorithm (it is used for selection of structure of the control system) fused with one of the following algorithms: evolutionary algorithm, firefly algorithm, gravitational search algorithm, bat algorithm and imperialist competitive algorithm (they are all used for the selection of parameters of the control system). In experimental simulations a typical problem of the control process was used.

Keywords

Fuzzy System Concept Drift Gravitational Search Algorithm Controller Structure Imperialist Competitive Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atashpaz-Gargari, E., Lucas, C.: Imperialist Competitive Algorithm: An algorithm for optimization inspired by imperialistic competition. In: IEEE Congress on Evolutionary Computation, vol. 7, pp. 4661–4666 (2007)Google Scholar
  2. 2.
    Bartczuk, Ł., Dziwiński, P., Starczewski, J.T.: A new method for dealing with unbalanced linguistic term set. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 207–212. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Bartczuk, Ł., Dziwiński, P., Starczewski, J.T.: New Method for Generation Type-2 Fuzzy Partition for FDT. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part I. LNCS (LNAI), vol. 6113, pp. 275–280. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Bartczuk, Ł., Przybył, A., Dziwiński, P.: Hybrid state variables - fuzzy logic modelling of nonlinear objects. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 227–234. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  5. 5.
    Bartczuk, Ł., Rutkowska, D.: A New Version of the Fuzzy-ID3 Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1060–1070. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Bartczuk, Ł., Rutkowska, D.: Medical Diagnosis with Type-2 Fuzzy Decision Trees. In: Kącki, E., Rudnicki, M., Stempczyńska, J. (eds.) Computers in Medical Activity. AISC, vol. 65, pp. 11–21. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bilski, J., Rutkowski, L.: Numerically Robust Learning Algorithms for Feed Forward Neural Networks. In: Advances in Soft Computing - Neural Networks and Soft Computing, pp. 149–154. Physica-Verlag, A Springer-Verlag Company (2003)Google Scholar
  8. 8.
    Bilski, J., Smoląg, J.: Parallel Approach to Learning of the Recurrent Jordan Neural Network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 32–40. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Bilski, J., Smoląg, J.: Parallel Realisation of the Recurrent Multi Layer Perceptron Learning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 12–20. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Cpalka, K.: A Method for Designing Flexible Neuro-fuzzy Systems. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 212–219. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Cpałka, K.: On evolutionary designing and learning of flexible neuro-fuzzy structures for nonlinear classification. Nonlinear Analysis Series A: Theory, Methods and Applications 71, 1659–1672 (2009)CrossRefGoogle Scholar
  12. 12.
    Cpałka, K., Rutkowski, L.: A New Method for Designing and Reduction of Neuro-fuzzy Systems. In: Proceedings of the 2006 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence, WCCI 2006), Vancouver, BC, Canada, pp. 8510–8516 (2006)Google Scholar
  13. 13.
    Cpałka, K., Rutkowski, L.: Flexible Takagi-Sugeno Fuzzy Systems. In: Proceedings of the International Joint Conference on Neural Networks 2005, Montreal, Montreal, pp. 1764–1769 (2005)Google Scholar
  14. 14.
    Cpałka, K., Rutkowski, L.: Flexible Takagi Sugeno Neuro-fuzzy Structures for Nonlinear Approximation. WSEAS Transactions on Systems 4(9), 1450–1458 (2005)Google Scholar
  15. 15.
    Dos Santos Coelho, L., De Andrade Bernert, D.L., Mariani, V.C.: A chaotic firefly algorithm applied to reliability-redundancy optimization. In: 2011 IEEE Congress on Evolutionary Computation (CEC), pp. 517–521 (2011)Google Scholar
  16. 16.
    Dziwiński, P., Bartczuk, Ł., Starczewski, J.T.: Fully controllable ant colony system for text data clustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) SIDE 2012 and EC 2012. LNCS, vol. 7269, pp. 199–205. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Dziwiñski, P., Rutkowska, D.: Algorithm for generating fuzzy rules for WWW document classification. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 1111–1119. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Dziwiński, P., Rutkowska, D.: Ant Focused Crawling Algorithm. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 1018–1028. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Dziwiński, P., Starczewski, J.T., Bartczuk, Ł.: New linguistic hedges in construction of interval type-2 fls. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 445–450. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. 20.
    El-Abd, M.: On the hybridization on the artificial bee colony and particle swarm optimization algorithms. Journal of Artificial Intelligence and Soft Computing Research 2(2), 147–155 (2012)MathSciNetGoogle Scholar
  21. 21.
    Fogel, D.B.: Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, 3rd edn. IEEE Press, Piscataway (2006)Google Scholar
  22. 22.
    Gabryel, M., Cpałka, K., Rutkowski, L.: Evolutionary strategies for learning of neuro-fuzzy systems. In: I Workshop on Genetic Fuzzy Systems, Granada, pp. 119–123 (2005)Google Scholar
  23. 23.
    Gabryel, M., Korytkowski, M., Scherer, R., Rutkowski, L.: Object Detection by Simple Fuzzy Classifiers Generated by Boosting. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 540–547. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  24. 24.
    Gabryel, M., Woźniak, M., Nowicki, R.K.: Creating Learning Sets for Control Systems Using an Evolutionary Method. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) SIDE 2012 and EC 2012. LNCS, vol. 7269, pp. 206–213. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  25. 25.
    Greblicki, W., Rutkowska, D., Rutkowski, L.: An orthogonal series estimate of time-varying regression. Annals of the Institute of Statistical Mathematics 35(2), 215–228 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Hassanzadeh, H.R., Rouhani, M.: A Multi-objective Gravitational Search Algorithm. In: Second International Conference on Computational Intelligence, Communication Systems and Networks (CICSyN), pp. 7–12 (2010)Google Scholar
  27. 27.
    Hassanzadeh, T., Meybodi, M.R.: A new hybrid algorithm based on Firefly Algorithm and cellular learning automata. In: The 20th Iranian Conference on Electrical Engineering, pp. 628–633 (2012)Google Scholar
  28. 28.
    Horzyk, A., Tadeusiewicz, R.: Self-Optimizing Neural Networks. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 150–155. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Jaworski, M., Duda, P., Pietruczuk, L.: On fuzzy clustering of data streams with concept drift. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 82–91. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Jelonkiewicz, J., Przybył, A.: Accuracy improvement of neural network state variable estimator in induction motor drive. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 71–77. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  31. 31.
    Korytkowski, M., Nowicki, R., Rutkowski, L., Scherer, R.: AdaBoost Ensemble of DCOG Rough-Neuro-Fuzzy Systems. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 62–71. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  32. 32.
    Korytkowski, M., Rutkowski, L., Scherer, R.: On combining backpropagation with boosting. In: Proceedings of the IEEE International Joint Conference on Neural Network (IJCNN), vols.1-10, pp. 1274–1277 (2006)Google Scholar
  33. 33.
    Laskowski, L.: A Novel Continuous Dual Mode Neural Network in Stereo-Matching Process. In: Diamantaras, K., Duch, W., Iliadis, L.S. (eds.) ICANN 2010, Part III. LNCS, vol. 6354, pp. 294–297. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  34. 34.
    Laskowski, Ł.: A novel hybrid-maximum neural network in stereo-matching process. Neural Comput. & Applic. 23, 2435–2450 (2013)CrossRefGoogle Scholar
  35. 35.
    Laskowski, Ł.: Hybrid-Maximum Neural Network for Depth Analysis from Stereo-Image. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 47–55. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  36. 36.
    Laskowski, Ł.: Objects Auto-selection from Stereo-Images Realized by Self-Correcting Neural Network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS (LNAI), vol. 7267, pp. 119–125. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  37. 37.
    Leva, A., Papadopoulos, A.V.: Tuning of event-based industrial controllers with simple stability guarantees. Journal of Process Control 23, 1251–1260 (2013)CrossRefGoogle Scholar
  38. 38.
    Li, C., Zhou, J., Fu, B., Kou, P., Xiao, J.: T-S Fuzzy Model Identification With a Gravitational Search-Based Hyperplane Clustering Algorithm. IEEE Trans. Fuzzy Systems 20(2), 305–317 (2012)CrossRefGoogle Scholar
  39. 39.
    Li, X., Er, M.J., Lim, B.S., Zhou, J.H., Gan, O.P., Rutkowski, L.: Fuzzy Regression Modeling for Tool Performance Prediction and Degradation Detection. International Journal of Neural Systems 20(5), 405–419 (2010)CrossRefGoogle Scholar
  40. 40.
    Lobato, F.S., Steffen Jr., V.: A new multi-objective optimization algorithm based on differential evolution and neighborhood exploring evolution strategy. Journal of Artificial Intelligence and Soft Computing Research 1(4), 259–267 (2011)Google Scholar
  41. 41.
    Lobato, F.S., Steffen Jr., V., Silva Neto, A.J.: Solution of singular optimal control problems using the improved differential evolution algorithm. Journal of Artificial Intelligence and Soft Computing Research 1(3), 195–206 (2011)Google Scholar
  42. 42.
    Lucas, C., Nasiri-Gheidari, Z., Tootoonchian, F.: Application of an imperialist competitive algorithm to the design of a linear induction motor. Energy Conversion and Management 51, 1407–1411 (2010)CrossRefGoogle Scholar
  43. 43.
    Łapa, K., Przybył, A., Cpałka, K.: A new approach to designing interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 523–534. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  44. 44.
    Łapa, K., Zalasiński, M., Cpałka, K.: A new method for designing and complexity reduction of neuro-fuzzy systems for nonlinear modelling. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 329–344. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  45. 45.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer (1999)Google Scholar
  46. 46.
    Nowicki, R.: On classification with missing data using rough-neuro-fuzzy systems. International Journal of Applied Mathematics and Computer Science 20(1), 55–67 (2010)CrossRefGoogle Scholar
  47. 47.
    Nowicki, R., Scherer, R., Rutkowski, L.: A method for learning of hierarchical fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, pp. 124–129. IOS Press (2002)Google Scholar
  48. 48.
    Patan, K., Patan, M.: Optimal training strategies for locally recurrent neural network. Journal of Artificial Intelligence and Soft Computing Research 1(2) (2011)Google Scholar
  49. 49.
    Pietruczuk, L., Duda, P., Jaworski, M.: A new fuzzy classifier for data streams. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS (LNAI), vol. 7267, pp. 318–324. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  50. 50.
    Pietruczuk, L., Duda, P., Jaworski, M.: Adaptation of decision trees for handling concept drift. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 459–473. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  51. 51.
    Pławiak, P., Tadeusiewicz, R.: Approximation of phenol concentration using novel hybrid computational intelligence methods. Applied Mathematics and Computer Science 24(1) (in print, 2014)Google Scholar
  52. 52.
    Prampero, P.S., Attux, R.: Magnetic particle swarm optimization. Journal of Artificial Intelligence and Soft Computing Research 2(1), 59–72 (2012)Google Scholar
  53. 53.
    Przybył, A., Cpałka, K.: A new method to construct of interpretable models of dynamic systems. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS (LNAI), vol. 7268, pp. 697–705. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  54. 54.
    Przybył, A., Jelonkiewicz, J.: Genetic algorithm for observer parameters tuning in sensorless induction motor drive. In: Rutkowski, L., Kacprzyk, J. (eds.) Networks and Soft Computing (6th International Conference on Neural Networks and Soft Computing 2002), Zakopane, Poland, pp. 376–381 (2003)Google Scholar
  55. 55.
    Przybył, A., Smoląg, J., Kimla, P.: Distributed Control System Based on Real Time Ethernet for Computer Numerical Controlled Machine Tool (in Polish). Przegląd Elektrotechniczny 86(2), 342–346 (2010)Google Scholar
  56. 56.
    Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: A Gravitational Search Algorithm. Information Sciences 179, 2232–2248 (2009)CrossRefzbMATHGoogle Scholar
  57. 57.
    Rasoanarivo, I., Brechet, S., Battiston, A., Nahid-Mobarakeh, B.: Behavioral Analysis of a Boost Converter with High Performance Source Filter and a Fractional-Order PID Controller. In: IEEE Industry Applications Society Annual Meeting (IAS), pp. 1–6 (2012)Google Scholar
  58. 58.
    Rutkowski, L.: Computational Intelligence. Springer (2008)Google Scholar
  59. 59.
    Rutkowski, L.: Multiple Fourier series procedures for extraction of nonlinear regressions from noisy data. IEEE Transactions on Signal Processing 41(10), 3062–3065 (1993)CrossRefzbMATHGoogle Scholar
  60. 60.
    Rutkowski, L., Cpałka, K.: Compromise approach to neuro-fuzzy systems. In: Sincak, P., Vascak, J., Kvasnicka, V., Pospichal, J. (eds.) Intelligent Technologies - Theory and Applications, vol. 76, pp. 85–90. IOS Press (2002)Google Scholar
  61. 61.
    Rutkowski, L., Cpałka, K.: Flexible weighted neuro-fuzzy systems. In: Proceedings of the 9th International Conference on Neural Information Processing (ICONIP 2002), Orchid Country Club, Singapore, CD November 18-22 (2002)Google Scholar
  62. 62.
    Rutkowski, L., Cpałka, K.: Neuro-fuzzy systems derived from quasi-triangular norms. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Budapest, July 26-29, vol. 2, pp. 1031–1036 (2004)Google Scholar
  63. 63.
    Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: Decision trees for mining data streams based on the gaussian approximation. IEEE Transactions on Knowledge and Data Engineering 26(1), 108–119 (2014)CrossRefGoogle Scholar
  64. 64.
    Rutkowski, L., Jaworski, M., Pietruczuk, L., Duda, P.: The CART decision tree for mining data streams. Information Sciences 266, 1–15 (2014)Google Scholar
  65. 65.
    Rutkowski, L., Pietruczuk, L., Duda, P., Jaworski, M.: Decision trees for mining data streams based on the McDiarmid’s bound. IEEE Transactions on Knowledge and Data Engineering 25(6), 1272–1279 (2013)CrossRefGoogle Scholar
  66. 66.
    Rutkowski, L., Przybył, A., Cpałka, K.: Novel on-line speed profile generation for industrial machine tool based on flexible neuro-fuzzy approximation. IEEE Transactions on Industrial Electronics 59, 1238–1247 (2012)CrossRefGoogle Scholar
  67. 67.
    Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online Speed Profile Generation for Industrial Machine Tool Based on Neuro-fuzzy Approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  68. 68.
    Rutkowski, L., Rafajlowicz, E.: On optimal global rate of convergence of some nonparametric identification procedures. IEEE Transaction on Automatic Control AC-34(10), 1089–1091 (1989)CrossRefMathSciNetGoogle Scholar
  69. 69.
    Scherer, R.: Neuro-fuzzy relational systems for nonlinear approximation and prediction. Nonlinear Analysis Series A: Theory, Methods and Applications 71(12), e1420–e1425 (2009)Google Scholar
  70. 70.
    Scherer, R., Rutkowski, L.: Connectionist fuzzy relational systems. In: Halgamuge, S.K., Wang, L. (eds.) 9th International Conference on Neural Information and Processing; 4th Asia-Pacific Conference on Simulated Evolution and Learning; 1st International Conference on Fuzzy Systems and Knowledge Discovery, Computational Intelligence for Modelling and Prediction Book Series, Singapore. SCI, vol. 2, pp. 35–47. Springer, Heidelberg (2005)Google Scholar
  71. 71.
    Starczewski, J., Scherer, R., Korytkowski, M., Nowicki, R.: Modular type-2 neuro-fuzzy systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 570–578. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  72. 72.
    Szaleniec, M., Goclon, J., Witko, M., Tadeusiewicz, R.: Application of artificial neural networks and DFT-based parameters for prediction of reaction kinetics of ethylbenzene dehydrogenase. Journal of Computer-Aided Molecular Design 20(3), 145–157 (2006)CrossRefGoogle Scholar
  73. 73.
    Szczypta, J., Przybył, A., Cpałka, K.: Some aspects of evolutionary designing optimal controllers. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 91–100. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  74. 74.
    Theodoridis, D.C., Boutalis, Y.S., Christodoulou, M.A.: Robustifying analysis of the direct adaptive control of unknown multivariable nonlinear systems based on a new neuro-fuzzy method. Journal of Artificial Intelligence and Soft Computing Research 1(1), 59–79 (2011)Google Scholar
  75. 75.
    Tran, V.N., Brdys, M.A.: Optimizing control by robustly feasible model predictive control and application to drinking water distribution systems. Journal of Artificial Intelligence and Soft Computing Research 1(1), 43–57 (2011)Google Scholar
  76. 76.
    Tsai, P.W., Pan, J.S., Liao, B.Y., Tsai, M.J., Istanda, V.: Bat algorithm inspired algorithm for solving numerical optimization problems. Applied Mechanics and Materials 148-149, 34–137 (2012)Google Scholar
  77. 77.
    Yang, X.S.: Bat Algorithm for Multi-objective Optimisation. Int. J. Bio-Inspired Computation 3, 267–274 (2011)CrossRefGoogle Scholar
  78. 78.
    Yang, X.S.: Nature-Inspired Metaheuristic Algorithms, pp. 80–96, University of Cambridge (2010)Google Scholar
  79. 79.
    Yousefi, M., Mohammadi, H.: Second law based optimization of a plate fin heat exchanger using Imperialist Competitive Algorithm. International Journal of the Physical Sciences 6, 4749–4759 (2011)Google Scholar
  80. 80.
    Zalasiński, M., Cpałka, K.: A new method of on-line signature verification using a flexible fuzzy one-class classifier, pp. 38–53. Academic Publishing House EXIT (2011)Google Scholar
  81. 81.
    Zalasiński, M., Cpałka, K.: New Approach for the On-Line Signature Verification Based on Method of Horizontal Partitioning. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS (LNAI), vol. 7895, pp. 342–350. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  82. 82.
    Zalasiński, M., Cpałka, K.: Novel algorithm for the on-line signature verification. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 362–367. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  83. 83.
    Zalasiński, M., Cpałka, K.: Novel Algorithm for the On-Line Signature Verification Using Selected Discretization Points Groups. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part I. LNCS (LNAI), vol. 7894, pp. 493–502. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  84. 84.
    Zalasiński, M., Łapa, K., Cpałka, K.: New Algorithm for Evolutionary Selection of the Dynamic Signature Global Features. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 113–121. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jacek Szczypta
    • 1
  • Krystian Łapa
    • 1
  • Zhifei Shao
    • 2
  1. 1.Institute of Computational IntelligenceCzȩstochowa University of TechnologyPoland
  2. 2.School of Electrical & Electronic EngineeringNanyang Technological UniversitySingapore

Personalised recommendations