Evolutionary Multi-modal Optimization with the Use of Multi-objective Techniques

  • Leszek Siwik
  • Rafał Dreżewski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8467)


When evolutionary algorithms for solving multi-modal optimization problems are applied, the crucial issue to be solved is maintaining population diversity to avoid drifting and focusing individuals around single global optima. A lot of techniques have been used here so far. Simultaneously for last twenty years a lot of effort has been made in the area of evolutionary algorithms for multi-objective optimization. As the result at least several highly efficient algorithms have been proposed such as NSGAII or SPEA2. Obviously, also in this case maintaining of population diversity is crucial but this time, taking the specificity of optimization in the Pareto sense, there are built-in mechanisms to solve this issue effectively. If so, the idea arises of applying of state-of-theart evolutionary multi-objective optimization algorithms for solving not original multi-modal (but single-objective) optimization task but rather its transformed into multi-objective problem form by introducing additional dispersion-oriented criteria. The goal of this paper is to present some further study in this area


Evolutionary Algorithm Multiobjective Optimization Pareto Frontier Multimodal Problem Maintain Population Diversity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, A., Jain, L.C., Goldberg, R.: Evolutionary Multiobjective Optimization Theoretical Advances and Applications. Springer (2005)Google Scholar
  2. 2.
    Byrski, A., Dreżewski, R., Siwik, L., Kisiel-Dorohinicki, M.: Evolutionary multi-agent systems. The Knowledge Engineering Review (to be published, 2014)Google Scholar
  3. 3.
    Chakrabarti, D., Kumar, R., Tomkins, A.: Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, New York (2006)Google Scholar
  4. 4.
    Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons (2008)Google Scholar
  5. 5.
    Dreżewski, R., Obrocki, K., Siwik, L.: Agent-based co-operative co-evolutionary algorithms for multi-objective portfolio optimization. In: Brabazon, A., O’Neill, M., Maringer, D.G. (eds.) Natural Computing in Computational Finance. SCI, vol. 293, pp. 63–84. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Dreżewski, R., Sepielak, J.: Evolutionary system for generating investment strategies. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 83–92. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Dreżewski, R., Siwik, L.: Techniques for maintaining population diversity in classical and agent-based multi-objective evolutionary algorithms. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part II. LNCS, vol. 4488, pp. 904–911. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Dreżewski, R., Siwik, L.: Agent-based co-operative co-evolutionary algorithm for multi-objective optimization. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 388–397. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Dreżewski, R., Siwik, L.: Co-evolutionary multi-agent system for portfolio optimization. In: Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance. SCI, vol. 100, pp. 271–299. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Hruschka, E.R., Campello, R.J.G.B., Freitas, A.A., de Carvalho, A.C.P.L.F.: A survey of evolutionary algorithms for clustering. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 39(2) (2009)Google Scholar
  11. 11.
    Marler, R., Arora, J.: Survey of multi-objective optimization methods for engineering. Structural and Multidisciplinary Optimization 26(6) (2004)Google Scholar
  12. 12.
    Preuss, M., Rudolph, G., Tumakaka, F.: Solving multimodal problems via multiobjective techniques with application to phase equilibrium detection. In: IEEE Congress on Evolutionary Computation. IEEE (2007)Google Scholar
  13. 13.
    Sarafis, I.A., Trinder, P.W., Zalzala, A.: Towards effective subspace clustering with an evolutionary algorithm. In: Sarker, R., et al. (eds.) Proceedings of the 2003 Congress on Evolutionary Computation, vol. 2. IEEE Press (2003)Google Scholar
  14. 14.
    Srinivas, N., Deb, K.: Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation 2(3), 221–248 (1994)CrossRefGoogle Scholar
  15. 15.
    Streichert, F., Stein, G., Ulmer, H., Zell, A.: A clustering based niching method for evolutionary algorithms. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 644–645. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  16. 16.
    Tasoulis, D.K., Plagianakos, V.P., Vrahatis, M.N.: Clustering in evolutionary algorithms to efficiently compute simultaneously local and global minima. In: Congress on Evolutionary Computation. IEEE (2005)Google Scholar
  17. 17.
    Tasoulis, D.K., Vrahatis, M.N.: The new window density function for efficient evolutionary unsupervised clustering. In: Congress on Evolutionary Computation. IEEE (2005)Google Scholar
  18. 18.
    Vrahatis, M.N., Boutsinas, B., Alevizos, P., Pavlides, G.: The new k-windows algorithm for improving the k-means clustering algorithm. J. Complex. 18(1) (March 2002)Google Scholar
  19. 19.
    Zitzler, E.: Evolutionary algorithms for multiobjective optimization: methods and applications. PhD thesis, Swiss Federal Institute of Technology, Zurich (1999)Google Scholar
  20. 20.
    Zitzler, E.: Evolutionary algorithms, multiobjective optimization, and applications (September 2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Leszek Siwik
    • 1
  • Rafał Dreżewski
    • 1
  1. 1.Department of Computer ScienceAGH University of Science and TechnologyKrakówPoland

Personalised recommendations