Skip to main content

Neural-Network Based Robust FTC: Application to Wind Turbines

  • Conference paper
Artificial Intelligence and Soft Computing (ICAISC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8467))

Included in the following conference series:

Abstract

The paper deals with the problem of a robust fault diagnosis of a wind turbine. The preliminary part of the paper describes the Linear Parameter-Varying model derivation with a Recurrent Neural Network. The subsequent part of the paper describes a robust fault detection, isolation and identification scheme, which is based on the observer and \(\mathcal{H}_{\infty}\) framework for a class of non-linear systems. The proposed approach is designed in such a way that a prescribed disturbance attenuation level is achieved with respect to the actuator fault estimation error while guaranteeing the convergence of the observer. Moreover, the controller parameters selection method of the considered system is presented. Final part of the paper shows the experimental results regarding wind turbines, which confirms the effectiveness of proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. De Oca, S., Puig, V., Witczak, M., Dziekan, L.: Fault-tolerant control strategy for actuator faults using lpv techniques: application to a two degree of freedom helicopter. International Journal of Applied Mathematics and Computer Science 22(1), 161–171 (2012)

    MATH  MathSciNet  Google Scholar 

  2. Gillijns, S., De Moor, B.: Unbiased minimum-variance input and state estimation for linear discrete-time systems. Automatica 43, 111–116 (2007)

    Article  MATH  Google Scholar 

  3. Iserman, R.: Fault Diagnosis Applications: Model Based Condition Monitoring, Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems. Springer, Berlin (2011)

    Book  Google Scholar 

  4. Lachhab, N., Abbas, H., Werner, H.: A neural-network based technique for modelling and LPV control of an arm-driven inverted pendulum. In: Proceedings of the 47th IEEE Conference on Decision and Control, Cancun, Mexico, pp. 3860–3865 (2008)

    Google Scholar 

  5. Luzar, M., Czajkowski, A., Witczak, M., Mrugalski, M.: Actuators ans sensors fault diagnosis with dynamic, state-space neural networks. In: Methods and Models in Automation and Robotics - MMAR 2012: Proceedings of the 17th IEEE International Conference, pp. 196–201 (2012)

    Google Scholar 

  6. Luzar, M., Witczak, M., Witczak, P.: Robust \(\mathcal{H}_{\infty}\) actuator fault diagnosis with neural network. In: Methods and Models in Automation and Robotics - MMAR 2013: Proceedings of the 18th IEEE International Conference, pp. 200–205 (2013)

    Google Scholar 

  7. Oliveira, M., Bernussou, J., Geromel, J.: A new discrete-time robust stability condition. System and Control Letters 37(4), 261–265 (1999)

    Article  MATH  Google Scholar 

  8. Puig, V.: Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies. International Journal of Applied Mathematics and Computer Science 20(4), 619–635 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sloth, C., Esbensen, T., Stoustrup, J.: Robust and fault-tolerant linear parameter-varying control of wind turbines. Mechatronics 21(4), 645–659 (2011)

    Article  Google Scholar 

  10. Witczak, M.: Modelling and Estimation Strategies for Fault Diagnosis of Non-linear Systems. Springer, Berlin (2007)

    MATH  Google Scholar 

  11. Witczak, M., Puig, V., Montes De Oca, S.: A fault-tolerant control strategy for non-linear discrete-time systems: application to the twin-rotor system. International Journal of Control 86(10), 1788–1799 (2013)

    Article  MathSciNet  Google Scholar 

  12. Witczak, M.: Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems. Springer, Berlin (2014)

    Book  Google Scholar 

  13. Zemouche, A., Boutayeb, M.: Observer design for Lipschitz non-linear systems: the discrete time case. IEEE Trans. Circuits and Systems - II: Express Briefs 53(8), 777–781 (2006)

    Article  Google Scholar 

  14. Zemouche, A., Boutayeb, M., Iulia Bara, G.: Observer for a class of Lipschitz systems with extension to \(\mathcal{H}_{\infty}\) performance analysis. Systems and Control Letters 57(1), 18–27 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Luzar, M., Witczak, M., Korbicz, J., Witczak, P. (2014). Neural-Network Based Robust FTC: Application to Wind Turbines. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8467. Springer, Cham. https://doi.org/10.1007/978-3-319-07173-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07173-2_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07172-5

  • Online ISBN: 978-3-319-07173-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics